InterPLM: Discovering Interpretable Features in Protein Language Models via Sparse Autoencoders

人工智能 计算机科学 自然语言处理 模式识别(心理学) 机器学习 语言学 哲学
作者
Elana P. Simon,James Zou
标识
DOI:10.1101/2024.11.14.623630
摘要

A bstract Protein language models (PLMs) have demonstrated remarkable success in protein modeling and design, yet their internal mechanisms for predicting structure and function remain poorly understood. Here we present a systematic approach to extract and analyze interpretable features from PLMs using sparse autoencoders (SAEs). By training SAEs on embeddings from the PLM ESM-2, we identify up to 2,548 human-interpretable latent features per layer that strongly correlate with up to 143 known biological concepts such as binding sites, structural motifs, and functional domains. In contrast, examining individual neurons in ESM-2 reveals up to 46 neurons per layer with clear conceptual alignment across 15 known concepts, suggesting that PLMs represent most concepts in superposition. Beyond capturing known annotations, we show that ESM-2 learns coherent concepts that do not map onto existing annotations and propose a pipeline using language models to automatically interpret novel latent features learned by the SAEs. As practical applications, we demonstrate how these latent features can fill in missing annotations in protein databases and enable targeted steering of protein sequence generation. Our results demonstrate that PLMs encode rich, interpretable representations of protein biology and we propose a systematic framework to extract and analyze these latent features. In the process, we recover both known biology and potentially new protein motifs. As community resources, we introduce InterPLM (interPLM.ai), an interactive visualization platform for exploring and analyzing learned PLM features, and release code for training and analysis at github.com/ElanaPearl/interPLM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
核桃发布了新的文献求助30
2秒前
6秒前
7秒前
meitounao完成签到,获得积分10
7秒前
7秒前
赘婿应助000采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
LaTeXer应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Owen应助Marshzz采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
LaTeXer应助科研通管家采纳,获得30
10秒前
Ava应助科研通管家采纳,获得10
10秒前
LaTeXer应助科研通管家采纳,获得30
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
LaTeXer应助孙pc采纳,获得30
11秒前
11秒前
12秒前
Ava应助WEE采纳,获得10
17秒前
17秒前
策略发布了新的文献求助10
17秒前
18秒前
23秒前
23秒前
23秒前
何东玲发布了新的文献求助10
24秒前
Pioneer发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761452
求助须知:如何正确求助?哪些是违规求助? 4101600
关于积分的说明 12691780
捐赠科研通 3817341
什么是DOI,文献DOI怎么找? 2107183
邀请新用户注册赠送积分活动 1131853
关于科研通互助平台的介绍 1010750