Natural Rubber Blend Optimization via Data-Driven Modeling: The Implementation for Reverse Engineering

计算机科学 克里金 杠杆(统计) 过程(计算) 人工神经网络 航程(航空) 天然橡胶 预测建模 机器学习 工艺工程 材料科学 工程类 操作系统 复合材料
作者
Allen Jonathan Román,Shiyi Qin,Julio C. Rodríguez,Leonardo D. González,Ví­ctor M. Zavala,Tim A. Osswald
出处
期刊:Polymers [MDPI AG]
卷期号:14 (11): 2262-2262 被引量:13
标识
DOI:10.3390/polym14112262
摘要

Natural rubber formulation methodologies implemented within industry primarily implicate a high dependence on the formulator’s experience as it involves an educated guess-and-check process. The formulator must leverage their experience to ensure that the number of iterations to the final blend composition is minimized. The study presented in this paper includes the implementation of blend formulation methodology that targets material properties relevant to the application in which the product will be used by incorporating predictive models, including linear regression, response surface method (RSM), artificial neural networks (ANNs), and Gaussian process regression (GPR). Training of such models requires data, which is equal to financial resources in industry. To ensure minimum experimental effort, the dataset is kept small, and the model complexity is kept simple, and as a proof of concept, the predictive models are used to reverse engineer a current material used in the footwear industry based on target viscoelastic properties (relaxation behavior, tanδ, and hardness), which all depend on the amount of crosslinker, plasticizer, and the quantity of voids used to create the lightweight high-performance material. RSM, ANN, and GPR result in prediction accuracy of 90%, 97%, and 100%, respectively. It is evident that the testing accuracy increases with algorithm complexity; therefore, these methodologies provide a wide range of tools capable of predicting compound formulation based on specified target properties, and with a wide range of complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akasazi完成签到,获得积分10
1秒前
迟故完成签到,获得积分10
1秒前
呜呜完成签到,获得积分10
1秒前
zihi驳回了852应助
2秒前
2秒前
冷酷大米完成签到,获得积分10
2秒前
独特从筠完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助友好小刺猬采纳,获得10
3秒前
dogzz发布了新的文献求助10
4秒前
hjying完成签到,获得积分10
4秒前
我是老大应助找文献的仔采纳,获得10
4秒前
NexusExplorer应助军军问问张采纳,获得10
5秒前
徐小发布了新的文献求助40
5秒前
蓝色条纹衫完成签到 ,获得积分10
5秒前
5秒前
QQQ发布了新的文献求助10
6秒前
青青松树枝完成签到,获得积分10
6秒前
orixero应助777采纳,获得10
6秒前
研友_VZG7GZ应助曾经书兰采纳,获得10
8秒前
糕糕想长高完成签到,获得积分10
8秒前
情怀应助11采纳,获得10
8秒前
9秒前
852应助您骂我应该的采纳,获得10
9秒前
wanci应助qiu采纳,获得10
9秒前
科研童发布了新的文献求助10
10秒前
田様应助啵啵采纳,获得10
10秒前
11秒前
11秒前
12秒前
张俊琪完成签到,获得积分10
12秒前
超体完成签到 ,获得积分10
13秒前
niceweiwei完成签到 ,获得积分10
13秒前
Evelyn_66完成签到 ,获得积分10
13秒前
14秒前
jliu发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532050
求助须知:如何正确求助?哪些是违规求助? 4620837
关于积分的说明 14575249
捐赠科研通 4560556
什么是DOI,文献DOI怎么找? 2498923
邀请新用户注册赠送积分活动 1478859
关于科研通互助平台的介绍 1450137