Joint Feature Adaptation and Graph Adaptive Label Propagation for Cross-Subject Emotion Recognition From EEG Signals

计算机科学 模式识别(心理学) 人工智能 情绪分类 脑电图 语音识别 图形 机器学习 心理学 理论计算机科学 精神科
作者
Yong Peng,Wen-Juan Wang,Wanzeng Kong,Feiping Nie,Bao‐Liang Lu,Andrzej Cichocki
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1941-1958 被引量:22
标识
DOI:10.1109/taffc.2022.3189222
摘要

Though Electroencephalogram (EEG) could objectively reflect emotional states of our human beings, its weak, non-stationary, and low signal-to-noise properties easily cause the individual differences. To enhance the universality of affective brain-computer interface systems, transfer learning has been widely used to alleviate the data distribution discrepancies among subjects. However, most of existing approaches focused mainly on the domain-invariant feature learning, which is not unified together with the recognition process. In this paper, we propose a joint feature adaptation and graph adaptive label propagation model (JAGP) for cross-subject emotion recognition from EEG signals, which seamlessly unifies the three components of domain-invariant feature learning, emotional state estimation and optimal graph learning together into a single objective. We conduct extensive experiments on two benchmark SEED_IV and SEED_V data sets and the results reveal that 1) the recognition performance is greatly improved, indicating the effectiveness of the triple unification mode; 2) the emotion metric of EEG samples are gradually optimized during model training, showing the necessity of optimal graph learning, and 3) the projection matrix-induced feature importance is obtained based on which the critical frequency bands and brain regions corresponding to subject-invariant features can be automatically identified, demonstrating the superiority of the learned shared subspace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周易完成签到,获得积分10
刚刚
刚刚
鸡鱼蚝发布了新的文献求助10
刚刚
月儿发布了新的文献求助10
1秒前
Sherlock发布了新的文献求助10
1秒前
18969431868发布了新的文献求助10
1秒前
天天快乐应助小白飞526采纳,获得10
1秒前
2秒前
珏珏子完成签到,获得积分20
2秒前
2秒前
田様应助无私的发卡采纳,获得10
3秒前
yeggoo发布了新的文献求助10
3秒前
廾匸完成签到,获得积分10
3秒前
科研狗发布了新的文献求助10
3秒前
lin完成签到,获得积分10
3秒前
科研通AI5应助鸡鱼蚝采纳,获得10
3秒前
科研顺利完成签到 ,获得积分10
3秒前
123321完成签到,获得积分10
3秒前
老10发布了新的文献求助10
4秒前
脆弱的仙人掌完成签到,获得积分20
4秒前
雪白小丸子完成签到,获得积分10
4秒前
4秒前
zt完成签到,获得积分10
4秒前
5秒前
5秒前
摇摇摇发布了新的文献求助10
5秒前
Ss完成签到 ,获得积分10
5秒前
姜茶发布了新的文献求助10
5秒前
5秒前
如风随水发布了新的文献求助10
7秒前
taozi完成签到,获得积分0
7秒前
8秒前
七七发布了新的文献求助20
8秒前
8秒前
8秒前
9秒前
王路宽完成签到,获得积分10
9秒前
威武无施发布了新的文献求助10
10秒前
科研通AI5应助深情秋刀鱼采纳,获得10
10秒前
小软完成签到,获得积分20
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796116
求助须知:如何正确求助?哪些是违规求助? 3341123
关于积分的说明 10304336
捐赠科研通 3057684
什么是DOI,文献DOI怎么找? 1677795
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762732