Multiple Attention-Guided Capsule Networks for Hyperspectral Image Classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 上下文图像分类 高光谱成像 特征提取 特征(语言学) 深度学习 图像(数学) 哲学 语言学
作者
Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Juan M. Haut
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:22
标识
DOI:10.1109/tgrs.2021.3135506
摘要

The profound impact of deep learning and particularly of convolutional neural networks (CNNs) in automatic image processing has been decisive for the progress and evolution of remote sensing (RS) hyperspectral imaging (HSI) processing. Indeed, CNNs have stated themselves as the current state of the art, reaching unparalleled results in HSI classification. However, most CNNs were designed for RGB images, and their direct application to HSI data analysis could lead to nonoptimal solutions. Moreover, CNNs perform classification based on the identification of specific features, neglecting the spatial relationships between different features (i.e., their arrangement) due to pooling techniques. The capsule network (CapsNet) architecture is an attempt to overcome this drawback by nesting several neural layers within a capsule, connected by dynamic routing, both to identify not only the presence of a feature but also its instantiation parameters and to learn the relationships between different features. Although this mechanism improves the data representations, enhancing the classification of HSI data, it still acts as a black box, without control of the most relevant features for classification purposes. Indeed, important features could be discriminated against. In this article, a new multiple attention-guided CapsNet is proposed to improve feature processing for RS-HSIs’ classification, both to improve computational efficiency (in terms of parameters) and increase accuracy. Hence, the most representative visual parts of the images are identified using a detailed feature extractor coupled with attention mechanisms. Extensive experimental results have been obtained on five real datasets, demonstrating the great potential of the proposed method compared to other state-of-the-art classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里江山一只蝇完成签到,获得积分10
1秒前
1秒前
jing发布了新的文献求助30
1秒前
Ghost完成签到,获得积分10
2秒前
2秒前
qianchimo完成签到 ,获得积分10
3秒前
miaomiao完成签到,获得积分10
3秒前
yb完成签到 ,获得积分20
5秒前
少喝奶茶完成签到,获得积分20
6秒前
斯文败类应助醉爱红酒采纳,获得10
6秒前
wsq完成签到,获得积分10
7秒前
zww发布了新的文献求助10
7秒前
8秒前
LO7pM2完成签到,获得积分10
10秒前
神秘玩家发布了新的文献求助10
10秒前
10秒前
Zozo完成签到,获得积分10
11秒前
罗静完成签到,获得积分10
13秒前
13秒前
微笑发布了新的文献求助10
14秒前
小小王发布了新的文献求助10
15秒前
Harper完成签到,获得积分10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
Xiaoxiao应助快乐的幻波采纳,获得20
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
Leif应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
17秒前
七月流火应助科研通管家采纳,获得10
17秒前
依依应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
CWNU_HAN应助科研通管家采纳,获得30
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
CWNU_HAN应助科研通管家采纳,获得30
17秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770