超级电容器
纳米棒
水平扫描速率
电容
材料科学
功率密度
电极
电容感应
纳米技术
电化学
制作
化学工程
电解质
光电子学
电流密度
假电容
纳米结构
化学
循环伏安法
功率(物理)
电气工程
病理
替代医学
物理化学
工程类
物理
医学
量子力学
作者
Swati J. Patil,J.H. Kim,D.W. Lee
标识
DOI:10.1016/j.cej.2017.03.095
摘要
In this study, Ni3S2-nanorod and CoNi2S4-microflower structures have been prepared using a simple one-step hydrothermal method. The complete absence of an additive polymeric binder enabled the electrode to obtain structural purity and excellent electrochemical activity. The formation of the nanorod and micro flowers (µflowers) was clearly visualized by the surface microstructural study. Ni3S2-nanorod and CoNi2S4-µflower electrodes show a significantly higher specific capacitance of 982.9 F g−1 and 2098.95 F g−1, respectively, with outstanding electrochemical cyclic stability performance. The CoNi2S4-µflower electrode can achieve an energy density of 82.98 Wh kg−1 with a power density of 9.63 kW kg−1. In addition, a 91% capacitive retention remains after 2000 cycles at a scan rate of 100 mV s−1. The designed hybrid asymmetric supercapacitor, based on Ni3S2-nanorod//CoNi2S4-µflower electrodes, exhibits a specific capacitance of 54.92 F g−1 at a scan rate of 5 mV s−1. The assembled asymmetric supercapacitor has an energy density of 6.6 Wh kg−1 while delivering a power density of 820 W kg−1. The capacitive retention of the initial capacitance remains desirable at 89.13% after 5000 CV cycles at a scan rate of 100 mV s−1. The present work manifests a vision for the fabrication of self-assembled, binder-free electrodes for high-performance hybrid supercapacitor application.
科研通智能强力驱动
Strongly Powered by AbleSci AI