清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transfer-Learning-Enhanced Regression Generative Adversarial Networks for Optimal eVTOL Takeoff Trajectory Prediction

起飞 弹道 生成语法 学习迁移 回归 计算机科学 人工智能 对抗制 生成对抗网络 机器学习 深度学习 工程类 数学 统计 航空航天工程 物理 天文
作者
Shuan-Tai Yeh,Xiaosong Du
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 1911-1911 被引量:2
标识
DOI:10.3390/electronics13101911
摘要

Electric vertical takeoff and landing (eVTOL) aircraft represent a crucial aviation technology to transform future transportation systems. The unique characteristics of eVTOL aircraft include reduced noise, low pollutant emission, efficient operating cost, and flexible maneuverability, which in the meantime pose critical challenges to advanced power retention techniques. Thus, optimal takeoff trajectory design is essential due to immense power demands during eVTOL takeoffs. Conventional design optimizations, however, adopt high-fidelity simulation models in an iterative manner resulting in a computationally intensive mechanism. In this work, we implement a surrogate-enabled inverse mapping optimization architecture, i.e., directly predicting optimal designs from design requirements (including flight conditions and design constraints). A trained inverse mapping surrogate performs real-time optimal eVTOL takeoff trajectory predictions with no need for running optimizations; however, one training sample requires one design optimization in this inverse mapping setup. The excessive training cost of inverse mapping and the characteristics of optimal eVTOL takeoff trajectories necessitate the development of the regression generative adversarial network (regGAN) surrogate. We propose to further enhance regGAN predictive performance through the transfer learning (TL) technique, creating a scheme termed regGAN-TL. In particular, the proposed regGAN-TL scheme leverages the generative adversarial network (GAN) architecture consisting of a generator network and a discriminator network, with a combined loss of the mean squared error (MSE) and binary cross-entropy (BC) losses, for regression tasks. In this work, the generator employs design requirements as input and produces optimal takeoff trajectory profiles, while the discriminator differentiates the generated profiles and real optimal profiles in the training set. The combined loss facilitates the generator training in the dual aspects: the MSE loss targets minimum differences between generated profiles and training counterparts, while the BC loss drives the generated profiles to share analogous patterns with the training set. We demonstrated the utility of regGAN-TL on optimal takeoff trajectory designs for the Airbus A3 Vahana and compared its performance against representative surrogates, including the multi-output Gaussian process, the conditional GAN, and the vanilla regGAN. Results showed that regGAN-TL reached the 99.5% generalization accuracy threshold with only 200 training samples while the best reference surrogate required 400 samples. The 50% reduction in training expense and reduced standard deviations of generalization accuracy achieved by regGAN-TL confirmed its outstanding predictive performance and broad engineering application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxcvvbb1001完成签到 ,获得积分10
1秒前
DaSheng完成签到,获得积分10
31秒前
淞淞于我完成签到 ,获得积分10
46秒前
chcmy完成签到 ,获得积分0
48秒前
复杂的可乐完成签到 ,获得积分10
1分钟前
anne完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
晴莹完成签到 ,获得积分10
3分钟前
XX2完成签到,获得积分10
3分钟前
可靠若云完成签到,获得积分10
3分钟前
3分钟前
沙漠中的玫瑰花完成签到,获得积分10
4分钟前
xiaoxiao完成签到 ,获得积分10
4分钟前
minnie完成签到 ,获得积分10
4分钟前
风清扬完成签到,获得积分0
5分钟前
善学以致用应助Ale87采纳,获得50
5分钟前
科研通AI6应助尚寻采纳,获得10
5分钟前
尚寻完成签到,获得积分10
5分钟前
星辰大海应助妮妮采纳,获得10
6分钟前
科研通AI5应助强强嘻嘻采纳,获得10
6分钟前
朝暮完成签到 ,获得积分10
6分钟前
叶远望完成签到 ,获得积分10
7分钟前
Re完成签到 ,获得积分10
7分钟前
8分钟前
妮妮发布了新的文献求助10
8分钟前
Chu_chu完成签到 ,获得积分10
8分钟前
桃子完成签到 ,获得积分10
8分钟前
姚芭蕉完成签到 ,获得积分0
8分钟前
眉间雪完成签到,获得积分10
8分钟前
幽默的太阳完成签到 ,获得积分10
9分钟前
叁月二完成签到 ,获得积分10
9分钟前
9分钟前
冷艳铁身完成签到 ,获得积分10
10分钟前
单薄碧灵完成签到 ,获得积分10
10分钟前
liliAnh完成签到 ,获得积分10
11分钟前
PHD满完成签到 ,获得积分10
11分钟前
走啊走应助kev采纳,获得10
11分钟前
moonlin完成签到 ,获得积分10
12分钟前
乐观水桃完成签到,获得积分10
12分钟前
Ray完成签到 ,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4806741
求助须知:如何正确求助?哪些是违规求助? 4121962
关于积分的说明 12752778
捐赠科研通 3856276
什么是DOI,文献DOI怎么找? 2123321
邀请新用户注册赠送积分活动 1145393
关于科研通互助平台的介绍 1037678