Proton exchange membrane‐based electrocatalytic systems for hydrogen production

质子 质子交换膜燃料电池 制氢 生产(经济) 化学 物理 核物理学 生物化学 有机化学 经济 宏观经济学
作者
Yangyang Zhou,Hongjing Zhong,Shanhu Chen,Guobin Wen,Liang Shen,Yanyong Wang,Ru Chen,Tao Li,Shuangyin Wang
出处
期刊:Carbon energy [Wiley]
卷期号:7 (1) 被引量:11
标识
DOI:10.1002/cey2.629
摘要

Abstract Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality. Proton exchange membrane (PEM)‐based electrocatalytic systems represent a promising technology for hydrogen production, which is equipped to combine efficiently with intermittent electricity from renewable energy sources. In this review, PEM‐based electrocatalytic systems for H 2 production are summarized systematically from low to high operating temperature systems. When the operating temperature is below 130°C, the representative device is a PEM water electrolyzer; its core components and respective functions, research status, and design strategies of key materials especially in electrocatalysts are presented and discussed. However, strong acidity, highly oxidative operating conditions, and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems. Increasing the temperature of PEM‐based electrocatalytic systems can cause an increase in current density, accelerate reaction kinetics and gas transport and reduce the ohmic value, activation losses, Δ G H* , and power consumption. Moreover, further increasing the operating temperature (120–300°C) of PEM‐based devices endows various hydrogen carriers (e.g., methanol, ethanol, and ammonia) with electrolysis, offering a new opportunity to produce hydrogen using PEM‐based electrocatalytic systems. Finally, several future directions and prospects for developing PEM‐based electrocatalytic systems for H 2 production are proposed through devoting more efforts to the key components of devices and reduction of costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观健柏完成签到,获得积分10
1秒前
考啥都上岸完成签到,获得积分10
3秒前
司马秋凌完成签到,获得积分10
4秒前
噗咔咔ya完成签到 ,获得积分10
7秒前
Maria完成签到 ,获得积分10
8秒前
和谐的映梦完成签到,获得积分10
9秒前
自由雪菲力完成签到,获得积分10
10秒前
Lyw完成签到 ,获得积分10
13秒前
养猪大户完成签到 ,获得积分10
15秒前
勤恳的雪卉完成签到,获得积分0
16秒前
17秒前
外向的雁玉完成签到,获得积分10
19秒前
小二郎应助刘芮采纳,获得10
21秒前
搬砖美少女完成签到,获得积分10
21秒前
soar完成签到 ,获得积分10
21秒前
耍酷的梦桃完成签到,获得积分10
22秒前
风清扬发布了新的文献求助10
22秒前
MaSaR完成签到,获得积分10
22秒前
搞怪的又蓝完成签到,获得积分10
23秒前
月下荷花完成签到 ,获得积分10
24秒前
勤勤完成签到 ,获得积分10
24秒前
卡卡东完成签到 ,获得积分10
25秒前
何甜甜完成签到,获得积分10
25秒前
乾坤完成签到,获得积分10
26秒前
Heidi完成签到,获得积分10
26秒前
清秀的仙人掌完成签到,获得积分10
26秒前
zhaozhao完成签到,获得积分10
26秒前
831143完成签到 ,获得积分0
28秒前
雨霧雲完成签到,获得积分10
30秒前
人间大清醒完成签到,获得积分10
30秒前
CandyJump完成签到,获得积分10
32秒前
32秒前
多边形完成签到 ,获得积分10
32秒前
风清扬发布了新的文献求助10
33秒前
六子完成签到,获得积分10
33秒前
单纯的小土豆完成签到 ,获得积分10
34秒前
我爱学习完成签到,获得积分10
35秒前
舒适的雁风完成签到,获得积分10
37秒前
muchuan完成签到,获得积分10
37秒前
研友_Z1WkgL完成签到,获得积分10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582