Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane

濒危物种 栖息地 扰动(地质) 生态学 景观生态学 地理 背景(考古学) 环境科学 环境资源管理 航程(航空) 生物 古生物学 复合材料 考古 材料科学
作者
Gang Wang,Cheng Wang,Ziru Guo,Lingjun Dai,Yuqin Wu,Hongyu Liu,Yufeng Li,Hao Chen,Yanan Zhang,Yongxiang Zhao,Hai Cheng,Tianwu Ma,Fei Xue
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:116: 106472-106472 被引量:90
标识
DOI:10.1016/j.ecolind.2020.106472
摘要

Numerous studies have been conducted on current distribution and future changes of habitats by researchers from a range of disciplines such as ecology, biology, geography, environmental science, and agricultural science, among others. However, there is a lack of detailed studies on historical spatiotemporal dynamics of habitat, which can provide useful information for the conservation and management of endangered species habitats. Thus, we proposed an integrated framework to assess historical changes of habitat across space and time, as well as to analyze the driving mechanism based on Maxent model and landscape theory. Here, we collected Red-crowned crane records and environmental variables including climate, elevation, wind farm disturbance, land use and land cover (LULC) type and disturbance, and road disturbance at regional scale from 1984 to 2017. Our results suggested that there was a dramatic decline in habitat area, habitat suitability and habitat connectivity. LULC disturbance was the major driving factor leading to the decline, followed by LULC type and wind farm disturbance. Importantly, our results quantified LULC disturbance threshold, LULC type suitability, and range of wind farm impact, which served to propose specific recommendations for habitat restoration. Our approach highlighted the importance of integrating species distribution models and landscape ecology theory for conservation, hence was widely applicable to endangered species in the context of increasing human activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TYolo发布了新的文献求助10
1秒前
温臻发布了新的文献求助10
1秒前
2秒前
坦率的海豚完成签到,获得积分10
2秒前
玛卡巴卡发布了新的文献求助10
3秒前
bofu发布了新的文献求助10
4秒前
5秒前
8秒前
阳光的夏槐完成签到,获得积分10
8秒前
慕青应助汪jy采纳,获得10
8秒前
英姑应助樊小雾采纳,获得10
9秒前
思源应助魔幻凝云采纳,获得10
9秒前
9秒前
要长高了完成签到,获得积分10
9秒前
打打应助pear采纳,获得10
11秒前
Bronx完成签到,获得积分10
11秒前
bofu发布了新的文献求助30
11秒前
炙热的子默完成签到,获得积分10
11秒前
Yu完成签到,获得积分10
12秒前
12秒前
顾矜应助TYolo采纳,获得10
12秒前
小乐发布了新的文献求助10
12秒前
533发布了新的文献求助30
13秒前
13秒前
打打应助陆桐采纳,获得20
13秒前
万能的小叮当完成签到,获得积分0
13秒前
魔幻凝云完成签到,获得积分10
13秒前
慕青应助可乐加冰采纳,获得10
14秒前
雍雍发布了新的文献求助10
14秒前
回忆里的大西瓜完成签到,获得积分20
15秒前
李健应助千秋采纳,获得10
15秒前
YANA完成签到,获得积分10
15秒前
bkagyin应助albertxin采纳,获得10
16秒前
慧慧要智慧完成签到,获得积分10
16秒前
针不戳完成签到,获得积分10
17秒前
hanzhipad举报繁荣的洋葱求助涉嫌违规
17秒前
17秒前
18秒前
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463