Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:74
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助CCC采纳,获得30
刚刚
生动娩发布了新的文献求助10
1秒前
希望天下0贩的0应助永远采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
6秒前
Rain完成签到,获得积分10
6秒前
6秒前
lili完成签到 ,获得积分20
8秒前
sasa完成签到,获得积分10
9秒前
Chrittia发布了新的文献求助20
10秒前
11秒前
cynthia发布了新的文献求助10
12秒前
咸鱼发布了新的文献求助30
12秒前
13秒前
健壮傲之完成签到 ,获得积分10
14秒前
15秒前
生动娩发布了新的文献求助10
15秒前
Irene完成签到,获得积分20
19秒前
19秒前
科研通AI6应助CCC采纳,获得10
19秒前
20秒前
小巧富完成签到 ,获得积分10
21秒前
Irene发布了新的文献求助10
22秒前
Ride发布了新的文献求助10
26秒前
乐乐应助可乐要开心采纳,获得10
26秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
科研通AI6应助gloval采纳,获得50
29秒前
29秒前
29秒前
852应助腼腆的忆安采纳,获得10
30秒前
打打应助Cmqq采纳,获得10
30秒前
生动娩发布了新的文献求助10
33秒前
GC发布了新的文献求助30
34秒前
现代姒发布了新的文献求助10
34秒前
Ava应助Humorous采纳,获得10
36秒前
Enso完成签到,获得积分10
37秒前
Yang完成签到 ,获得积分10
39秒前
酷波er应助CCC采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783