Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

分割 遥感 计算机科学 人工智能 航空影像 计算机视觉 航空影像 地理 图像(数学)
作者
Jian Cheng,Changjian Deng,Yanzhou Su,Zeyu An,Qi Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 1-34 被引量:18
标识
DOI:10.1016/j.isprsjprs.2024.03.012
摘要

Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing" and "semantic segmentation" to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abobo完成签到 ,获得积分10
1秒前
九儿完成签到 ,获得积分10
1秒前
weiyubi完成签到,获得积分10
5秒前
帕金森关注了科研通微信公众号
6秒前
良仑关注了科研通微信公众号
10秒前
BK2008完成签到,获得积分10
10秒前
昏睡的蟠桃应助zll采纳,获得60
13秒前
17秒前
钱俊完成签到,获得积分10
17秒前
21秒前
liuliuliu发布了新的文献求助10
22秒前
23秒前
草莓味的榴莲完成签到,获得积分10
24秒前
qinghong发布了新的文献求助10
26秒前
28秒前
司徒元瑶完成签到 ,获得积分10
30秒前
CipherSage应助竹马子采纳,获得10
31秒前
lonelymusic完成签到,获得积分10
35秒前
Skyrin完成签到,获得积分0
36秒前
朱比特完成签到,获得积分10
39秒前
夹心吉吉完成签到 ,获得积分10
40秒前
44秒前
jazzmantan发布了新的文献求助10
48秒前
Leif应助科研通管家采纳,获得10
48秒前
qiao应助科研通管家采纳,获得10
48秒前
科研通AI5应助科研通管家采纳,获得30
49秒前
Singularity应助科研通管家采纳,获得10
49秒前
所所应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
49秒前
49秒前
SciGPT应助sym采纳,获得10
50秒前
nn发布了新的文献求助10
53秒前
55秒前
ll完成签到,获得积分10
59秒前
满当当发布了新的文献求助10
1分钟前
深情安青应助qinghong采纳,获得10
1分钟前
ni完成签到 ,获得积分10
1分钟前
依然小爽完成签到 ,获得积分10
1分钟前
XXH216完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535