MultiFair: Model Fairness With Multiple Sensitive Attributes

计算机科学
作者
Huan Tian,Bo Liu,Tianqing Zhu,Wanlei Zhou,Philip S. Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3384181
摘要

While existing fairness interventions show promise in mitigating biased predictions, most studies concentrate on single-attribute protections. Although a few methods consider multiple attributes, they either require additional constraints or prediction heads, incurring high computational overhead or jeopardizing the stability of the training process. More critically, they consider per-attribute protection approaches, raising concerns about fairness gerrymandering where certain attribute combinations remain unfair. This work aims to construct a neutral domain containing fused information across all subgroups and attributes. It delivers fair predictions as the fused input contains neutralized information for all considered attributes. Specifically, we adopt mixup operations to generate samples with fused information. However, our experiments reveal that directly adopting the operations leads to degraded prediction results. The excessive mixup operations result in unrecognizable training data. To this end, we design three distinct mixup schemes that balance information fusion across attributes while retaining distinct visual features critical for training valid models. Extensive experiments with multiple datasets and up to eight sensitive attributes demonstrate that the proposed MultiFair method can deliver fairness protections for multiple attributes while maintaining valid prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秦梓椋完成签到,获得积分10
1秒前
宝海青发布了新的文献求助10
1秒前
2秒前
2秒前
人类懂王发布了新的文献求助30
2秒前
荔枝面完成签到,获得积分20
3秒前
3秒前
3秒前
gg发布了新的文献求助10
3秒前
完美的冰淇淋完成签到,获得积分10
4秒前
张教授发布了新的文献求助10
4秒前
我爱科研发布了新的文献求助10
4秒前
5秒前
嗯嗯嗯完成签到,获得积分10
5秒前
5秒前
5秒前
Lucas应助yy采纳,获得10
8秒前
9秒前
ting发布了新的文献求助10
9秒前
9秒前
窦嘉懿完成签到 ,获得积分10
10秒前
10秒前
Lucas应助gg采纳,获得10
11秒前
11秒前
隔壁老六发布了新的文献求助10
11秒前
lemon完成签到,获得积分10
11秒前
可爱的羽毛完成签到,获得积分10
12秒前
搞怪玩家发布了新的文献求助10
12秒前
wellshine完成签到,获得积分10
13秒前
sure完成签到 ,获得积分20
13秒前
爆米花应助sdl采纳,获得10
14秒前
白白嫩嫩发布了新的文献求助60
14秒前
15秒前
烂漫草莓完成签到,获得积分10
15秒前
15秒前
田様应助单薄的雪兰采纳,获得10
15秒前
16秒前
senyusing完成签到,获得积分10
16秒前
负责的靖琪完成签到 ,获得积分10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588