Feature-Guided Multitask Change Detection Network

变更检测 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 特征提取 编码器 目标检测 哲学 语言学 操作系统
作者
Yupeng Deng,Jiansheng Chen,Shiming Yi,Anzhi Yue,Yu Meng,Jingbo Chen,Yi Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 9667-9679 被引量:8
标识
DOI:10.1109/jstars.2022.3215773
摘要

Change detection is the discovery of changes in remote sensing images of the same region obtained at different times. Change detection algorithms based on deep neural networks have significant advantages over traditional algorithms on high-resolution images. State-of-the-art (SOTA) change detection methods require sufficient labeled data to achieve good results, but semantic change detection requires not only binary change masks but also “from-to” change information, so large quantities of change labels are difficult to obtain. Achieving better semantic change detection accuracy with a limited number of labels remains an open problem in the remote sensing field. In this paper, we propose a feature-guided multitask change detection network (MCDnet). Feature guidance is characterized by three steps: 1) a multitask learning network that uses Siamese encoders to learn segmentation and change detection features simultaneously to realize mutual guidance between tasks is designed, 2) a fine-grained feature fusion module to integrate and enhance change information under the guidance of symmetrical change features is constructed, and 3) a contrastive loss function based on the a priori knowledge that the features of the changed regions are different while those of the unchanged regions are the same is proposed. The experimental results show that MCDnet achieves SOTA results on three public change detection datasets, including WHU-CD (F1: 94.46\IoU: 89.50), LEVIR (F1: 92.11\IoU: 85.37) and SECOND (mIoU: 73.1\Sek: 22.8). In addition, it is surprising that MCDnet is comparable to the SOTA models while using only 20% of the full training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyt发布了新的文献求助10
2秒前
遇上就这样吧应助Dark_Moon采纳,获得50
3秒前
lee发布了新的文献求助10
3秒前
yourbigdaddy发布了新的文献求助10
5秒前
关节科小大夫完成签到,获得积分10
6秒前
遇上就这样吧给钰是不珏的求助进行了留言
6秒前
能干的雁回完成签到,获得积分10
8秒前
hh发布了新的文献求助10
8秒前
001发布了新的文献求助20
8秒前
NexusExplorer应助yejq采纳,获得10
9秒前
星辰大海应助yeyongchang_hit采纳,获得10
9秒前
敏感绫萱完成签到,获得积分10
9秒前
赫赫完成签到,获得积分10
10秒前
10秒前
杨帆的科研完成签到,获得积分20
11秒前
邱壮子完成签到 ,获得积分10
11秒前
lee完成签到,获得积分10
11秒前
11秒前
无情的尔烟完成签到,获得积分10
12秒前
help3q发布了新的文献求助10
12秒前
12秒前
12秒前
大模型应助yin采纳,获得10
12秒前
研友_VZG7GZ应助小王爱吃肉采纳,获得10
12秒前
14秒前
科研通AI5应助zzznznnn采纳,获得10
14秒前
mogekkko发布了新的文献求助10
14秒前
YJC完成签到,获得积分20
15秒前
ccq发布了新的文献求助20
16秒前
16秒前
17秒前
昔我往矣完成签到 ,获得积分10
17秒前
17秒前
zhovy完成签到,获得积分10
18秒前
赫赫发布了新的文献求助10
18秒前
所所应助YJC采纳,获得10
19秒前
欧阳发布了新的文献求助10
19秒前
20秒前
Yolo发布了新的文献求助10
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794812
求助须知:如何正确求助?哪些是违规求助? 3339698
关于积分的说明 10296934
捐赠科研通 3056378
什么是DOI,文献DOI怎么找? 1676972
邀请新用户注册赠送积分活动 804994
科研通“疑难数据库(出版商)”最低求助积分说明 762286