Disentangled Multi-interest Representation Learning for Sequential Recommendation

计算机科学 代表(政治) 人工智能 推荐系统 机器学习 政治 政治学 法学
作者
Yingpeng Du,Ziyan Wang,Zhu Sun,Yining Ma,Hongzhi Liu,Jie Zhang
标识
DOI:10.1145/3637528.3671800
摘要

Recently, much effort has been devoted to modeling users' multi-interests (aka multi-faceted preferences) based on their behaviors, aiming to accurately capture users' complex preferences. Existing methods attempt to model each interest of users through a distinct representation, but these multi-interest representations easily collapse into similar ones due to a lack of effective guidance. In this paper, we propose a generic multi-interest method for sequential recommendation, achieving disentangled representation learning of diverse interests technically and theoretically. To alleviate the collapse issue of multi-interests, we propose to conduct item partition guided by their likelihood of being co-purchased in a global view. It can encourage items in each group to focus on a discriminated interest, thus achieving effective disentangled learning of multi-interests. Specifically, we first prove the theoretical connection between item partition and spectral clustering, demonstrating its effectiveness in alleviating item-level and facet-level collapse issues that hinder existing disentangled methods. To efficiently optimize this problem, we then propose a Markov Random Field (MRF)-based method that samples small-scale sub-graphs from two separate MRFs, thus it can be approximated with a cross-entropy loss and optimized through contrastive learning. Finally, we perform multi-task learning to seamlessly align item partition learning with multi-interest modeling for more accurate recommendation. Experiments on three real-world datasets show that our method significantly outperforms state-of-the-art methods and can flexibly integrate with existing multi-interest models as a plugin to enhance their performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助李大柱采纳,获得10
1秒前
wzz发布了新的文献求助10
1秒前
星辉夜雨发布了新的文献求助10
2秒前
吴军霄完成签到,获得积分10
4秒前
4秒前
5秒前
魑魅魍魉999完成签到 ,获得积分10
5秒前
5秒前
星辰大海应助JustinaLiu采纳,获得50
6秒前
李健应助热心的秋莲采纳,获得10
7秒前
Cecila完成签到,获得积分10
7秒前
smgua完成签到,获得积分10
7秒前
8秒前
9秒前
阔达犀牛完成签到,获得积分10
9秒前
10秒前
Jasper应助南枝采纳,获得10
11秒前
12秒前
hhh2018687发布了新的文献求助30
12秒前
卡卡完成签到,获得积分10
15秒前
kook发布了新的文献求助20
15秒前
kkc发布了新的文献求助30
16秒前
18秒前
斯文败类应助hu970采纳,获得10
19秒前
yl-h完成签到,获得积分10
19秒前
王君青见完成签到,获得积分10
20秒前
Beyond完成签到,获得积分10
20秒前
坚定青槐完成签到,获得积分10
22秒前
Bo发布了新的文献求助20
22秒前
香蕉觅云应助wang采纳,获得10
22秒前
研友_VZG7GZ应助聪明的一德采纳,获得10
22秒前
22秒前
24秒前
ZSR完成签到,获得积分10
25秒前
hu970完成签到,获得积分20
25秒前
monly发布了新的文献求助10
25秒前
28秒前
JustinaLiu完成签到,获得积分10
28秒前
小马甲应助三水采纳,获得10
28秒前
万能图书馆应助chimchim采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297579
求助须知:如何正确求助?哪些是违规求助? 4446407
关于积分的说明 13839369
捐赠科研通 4331573
什么是DOI,文献DOI怎么找? 2377767
邀请新用户注册赠送积分活动 1373035
关于科研通互助平台的介绍 1338563