已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continuous Prediction of Lower-Limb Joint Parameters for Robotic Rehabilitation Based on Horizontal Position of Center of Mass

作者
Jiang Jin-jian,Mozafar Saadat,Guowei Liu,Marco Maddalena,Seyed Mehdi Rezaei
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33: 4362-4373
标识
DOI:10.1109/tnsre.2025.3619996
摘要

Continuous prediction of joint parameters is replacing discrete gait phase control to be the mainstream in rehabilitation robot control field. The sensor-based methods which use inertial measurement units (IMU), surface electromyography (sEMG) and so on are widely used in gaining joint parameters for robot control. However, those methods introduce many sensors attached to patients and affect the walking during training. To reduce the number of sensors needed, a method is proposed to use centre of mass (CoM) horizontal position to predict angles, angular velocities and accelerations of ankle, knee, and hip joints. Long short-term memory (LSTM) is a kind of recurrent neural network (RNN) widely used in predicting time series data. To gain the most suitable model to predict joint parameters of each joint, the performances of Autoencoding-LSTM (combining encoder-decoder with LSTM), CNN-LSTM (combining convolutional neural network with LSTM) and stacked LSTM with different input window sizes on predicting joint parameters of each joint are compared, and the models with optimal performances are selected as a model pack to achieve high quality prediction of joint parameters. The number of sensors needed is reduced by 50% with the accuracy equal to those methods using IMU or sEMG sensors. And the results additionally show that different models perform variously on predicting different joint parameters of different joints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啦啦完成签到,获得积分10
1秒前
MrFANG完成签到,获得积分10
2秒前
隐形曼青应助贪玩草丛采纳,获得10
2秒前
852应助sssss采纳,获得10
4秒前
katata完成签到 ,获得积分10
5秒前
明钟达完成签到,获得积分10
6秒前
充电宝应助chyyen采纳,获得10
7秒前
张一二二二完成签到,获得积分10
10秒前
hjc完成签到,获得积分10
10秒前
Orange应助调皮的君浩采纳,获得10
10秒前
科研fw完成签到 ,获得积分10
11秒前
shuang完成签到 ,获得积分10
12秒前
NiLou完成签到,获得积分10
13秒前
龙骑士25完成签到 ,获得积分10
14秒前
14秒前
有趣的银完成签到,获得积分10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
renzhenuexi应助科研通管家采纳,获得10
17秒前
竹筏过海应助科研通管家采纳,获得100
17秒前
竹筏过海应助科研通管家采纳,获得100
17秒前
17秒前
敬业乐群发布了新的文献求助10
17秒前
lyt完成签到,获得积分10
18秒前
清秀芝麻完成签到 ,获得积分10
20秒前
EternalStrider完成签到,获得积分10
20秒前
ding应助ccm采纳,获得10
21秒前
HK完成签到 ,获得积分10
24秒前
holmes完成签到,获得积分10
30秒前
zzzz发布了新的文献求助10
31秒前
Criminology34应助ccm采纳,获得10
32秒前
34秒前
35秒前
核桃发布了新的文献求助20
37秒前
摘要发布了新的文献求助10
37秒前
38秒前
oatmealR完成签到 ,获得积分10
40秒前
41秒前
朝槿完成签到 ,获得积分10
42秒前
不吃了完成签到 ,获得积分10
43秒前
一个可爱的人完成签到 ,获得积分10
43秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209739
求助须知:如何正确求助?哪些是违规求助? 4386912
关于积分的说明 13661937
捐赠科研通 4246363
什么是DOI,文献DOI怎么找? 2329699
邀请新用户注册赠送积分活动 1327477
关于科研通互助平台的介绍 1279863