Dynamic Feature-fused Localization with Smartphones Exploiting 5G NR SSB and Wi-Fi for Indoor Environments

计算机科学 人工智能 特征(语言学) 加权 卡尔曼滤波器 离群值 假警报 滤波器(信号处理) 实时计算 计算机视觉 语言学 医学 放射科 哲学
作者
Haoxiao Yang,Liang Chen,Han Liu,Guanwen Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:1
标识
DOI:10.1109/tim.2024.3352695
摘要

With the rapid development and wide deployment of fifth-generation (5G) and Wi-Fi technologies, indoor positioning has entered a new era. Particularly, the salient properties of 5G New Radio (NR), such as the synchronization signal block (SSB) with multiple beams, demonstrate superiority in utilizing multivariate fingerprints for positioning. However, existing research has rarely explored the fusion of 5G NR SSB and Wi-Fi with dynamic features for positioning in complex indoor environments. To address this gap, this study proposes a dynamic features-fused localization (DFF-Loc) framework that leverages the complementary advantages of 5G NR SSB and Wi-Fi to achieve accurate, reliable, robust indoor positioning. DFF-Loc consists of four modules: a dynamic signal filter that uses the extended Kalman filter, prepositioning using a lightweight backpropagation neural network, outlier detection through the local outlier factor, and dynamic weighting fusion based on improved particle filter using signal features. Field experiments are conducted with two of smartphones in three typical indoor scenarios to evaluate the performance of DFF-Loc. Compared with 5G-based and Wi-Fi-based methods, DFF-Loc exhibits an average accuracy improvement of 28.23% and 20.38%, respectively. DFF-Loc outperforms classical machine learning algorithms in all tests, with average accuracies of 1.87, 3.97, and 1.23 m. Dynamic experiments reveal the same. The cumulative error probability diagrams demonstrate DFF-Loc’s excellent convergence ability, with the majority of points falling within acceptable error ranges. This solution can serve as a valuable reference for navigation with consumer-grade smartphones exploiting 5G NR SSB and Wi-Fi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助晨霜采纳,获得30
刚刚
Cash完成签到,获得积分20
刚刚
ergatoid发布了新的文献求助30
1秒前
无花果应助youxiaotong采纳,获得10
2秒前
风的味道发布了新的文献求助10
2秒前
冯好运完成签到,获得积分10
2秒前
XY完成签到,获得积分10
2秒前
2秒前
3秒前
年轻的问兰完成签到,获得积分10
3秒前
3秒前
Jasper应助科研小菜鸡采纳,获得10
3秒前
4秒前
4秒前
4秒前
搜集达人应助夕荀采纳,获得10
4秒前
流浪完成签到,获得积分10
4秒前
pfangjin发布了新的文献求助10
5秒前
5秒前
zyl完成签到 ,获得积分10
6秒前
6秒前
6秒前
科研通AI5应助cwj采纳,获得30
7秒前
permanent发布了新的文献求助10
8秒前
彭于晏应助xiaojin采纳,获得10
8秒前
施天问发布了新的文献求助10
9秒前
9秒前
王王飞发布了新的文献求助10
9秒前
9秒前
9秒前
热心烙完成签到,获得积分10
9秒前
10秒前
可爱的函函应助wangyuchen采纳,获得10
10秒前
xhm发布了新的文献求助10
10秒前
小小怪发布了新的文献求助10
10秒前
王星星发布了新的文献求助150
11秒前
12秒前
12秒前
zlx完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
P. J. Flory: "Principles of Polymer Chemistry" Cornell Univ. 1953 200
Information Security and Cryptology Inscrypt 2024 Part I 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827847
求助须知:如何正确求助?哪些是违规求助? 3369989
关于积分的说明 10460568
捐赠科研通 3089839
什么是DOI,文献DOI怎么找? 1700055
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770325