An interpretable model predicts visual outcomes of no light perception eyes after open globe injury

医学 验光服务 地球仪 感知 眼科 神经科学 生物
作者
Xiangda Meng,Qihua Wang,Song Chen,Shijie Zhang,Jinguo Yu,Haibo Li,Xinkang Chen,Zhaoyang Wang,Wenzhen Yu,Zhi Zheng,Heding Zhou,Jing Luo,Zhiliang Wang,Haoyu Chen,Nan Wu,Dan Hu,Suihua Chen,Yong Wei,Haibin Cui,Huping Song
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:108 (2): 285-293 被引量:2
标识
DOI:10.1136/bjo-2022-322753
摘要

Background The visual outcome of open globe injury (OGI)-no light perception (NLP) eyes is unpredictable traditionally. This study aimed to develop a model to predict the visual outcomes of vitrectomy surgery in OGI-NLP eyes using a machine learning algorithm and to provide an interpretable system for the prediction results. Methods Clinical data of 459 OGI-NLP eyes were retrospectively collected from 19 medical centres across China to establish a training data set for developing a model, called ‘VisionGo’, which can predict the visual outcome of the patients involved and compare with the Ocular Trauma Score (OTS). Another 72 cases were retrospectively collected and used for human–machine comparison, and an additional 27 cases were prospectively collected for real-world validation of the model. The SHapley Additive exPlanations method was applied to analyse feature contribution to the model. An online platform was built for real-world application. Results The area under the receiver operating characteristic curve (AUC) of VisionGo was 0.75 and 0.90 in previtrectomy and intravitrectomy application scenarios, which was much higher than the OTS (AUC=0.49). VisionGo showed better performance than ophthalmologists in both previtrectomy and intravitrectomy application scenarios (AUC=0.73 vs 0.57 and 0.87 vs 0.64). In real-world validation, VisionGo achieved an AUC of 0.60 and 0.91 in previtrectomy and intravitrectomy application scenarios. Feature contribution analysis indicated that wound length-related indicators, vitreous status and retina-related indicators contributed highly to visual outcomes. Conclusions VisionGo has achieved an accurate and reliable prediction in visual outcome after vitrectomy for OGI-NLP eyes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i2stay完成签到,获得积分10
3秒前
NexusExplorer应助movoandy采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
婉莹完成签到 ,获得积分0
7秒前
BAEK完成签到,获得积分10
8秒前
panpan完成签到,获得积分10
14秒前
啊哈哈完成签到,获得积分10
15秒前
自转无风完成签到,获得积分10
15秒前
林风发布了新的文献求助10
18秒前
一行白鹭上青天完成签到 ,获得积分10
22秒前
丽莉发布了新的文献求助10
23秒前
Physio发布了新的文献求助10
24秒前
周常通完成签到,获得积分10
28秒前
30秒前
丽莉完成签到,获得积分20
30秒前
量子星尘发布了新的文献求助10
31秒前
不可靠月亮完成签到,获得积分10
32秒前
33秒前
fawr完成签到 ,获得积分10
33秒前
33秒前
欢喜的早晨完成签到,获得积分10
34秒前
尼古拉耶维奇完成签到,获得积分10
38秒前
浮游应助丽莉采纳,获得10
38秒前
量子星尘发布了新的文献求助10
42秒前
46秒前
朴实的小萱完成签到 ,获得积分10
49秒前
可靠月亮完成签到,获得积分10
51秒前
曾泰平发布了新的文献求助10
52秒前
movoandy发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
58秒前
58秒前
灯座完成签到,获得积分10
59秒前
cxqygdn完成签到,获得积分0
59秒前
xiaofan应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
MiaMia应助科研通管家采纳,获得10
1分钟前
xiaofan应助科研通管家采纳,获得10
1分钟前
1分钟前
鲸鱼打滚完成签到 ,获得积分10
1分钟前
席以亦完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543731
求助须知:如何正确求助?哪些是违规求助? 4629677
关于积分的说明 14611499
捐赠科研通 4571097
什么是DOI,文献DOI怎么找? 2506089
邀请新用户注册赠送积分活动 1483306
关于科研通互助平台的介绍 1454857