An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU

医学 败血症 队列 重症监护 急诊医学 重症监护医学 病历 内科学
作者
Shamim Nemati,Andre L. Holder,Fereshteh Razmi,Matthew D. Stanley,Gari D. Clifford,Timothy G. Buchman
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:46 (4): 547-553 被引量:639
标识
DOI:10.1097/ccm.0000000000002936
摘要

Objectives: Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Design: Observational cohort study. Setting: Academic medical center from January 2013 to December 2015. Patients: Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. Interventions: None. Measurements and Main Results: High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83–0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Conclusions: Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4–12 hours prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed sepsis prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liziqi发布了新的文献求助10
刚刚
1秒前
三岁应助孤梦落雨采纳,获得10
2秒前
梁成伟发布了新的文献求助10
3秒前
qcck完成签到,获得积分10
4秒前
4秒前
捉一只小鱼完成签到 ,获得积分10
5秒前
weita发布了新的文献求助10
6秒前
7秒前
张XX完成签到,获得积分10
7秒前
7秒前
duobao完成签到,获得积分10
7秒前
8秒前
8秒前
jw完成签到,获得积分10
9秒前
阿程发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
蒋溶发布了新的文献求助10
12秒前
Ingrid_26完成签到,获得积分10
12秒前
jf发布了新的文献求助10
12秒前
12356发布了新的文献求助10
13秒前
小郭发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
tetrodotoxin应助punchline采纳,获得10
16秒前
weita完成签到,获得积分10
16秒前
甄的艾你发布了新的文献求助10
17秒前
迟梨完成签到,获得积分10
18秒前
jiangqingquan完成签到,获得积分10
19秒前
绝情继父发布了新的文献求助10
19秒前
Walter发布了新的文献求助10
20秒前
20秒前
小马甲应助汤飞柏采纳,获得10
20秒前
超帅涵柳完成签到 ,获得积分20
21秒前
ZXD1989完成签到 ,获得积分10
23秒前
最初的远方完成签到,获得积分10
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825982
求助须知:如何正确求助?哪些是违规求助? 3368267
关于积分的说明 10450191
捐赠科研通 3087810
什么是DOI,文献DOI怎么找? 1698813
邀请新用户注册赠送积分活动 817107
科研通“疑难数据库(出版商)”最低求助积分说明 770039