清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The design and validation of a fast and low-cost multi-purpose electronic nose for rapid gas identification

电子鼻 传感器阵列 判别式 鉴定(生物学) 计算机科学 软件 降维 工程类 人工智能 嵌入式系统 计算机硬件 机器学习 植物 生物 程序设计语言
作者
Hanene Rouabeh,Sami Gomri,Mohamed Masmoudi
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (6): 613-630 被引量:3
标识
DOI:10.1108/sr-01-2022-0019
摘要

Purpose The purpose of this paper is to design and validate an electronic nose (E-nose) prototype using commercially available metal oxide gas sensors (MOX). This prototype has a sensor array board that integrates eight different MOX gas sensors to handle multi-purpose applications. The number of sensors can be adapted to match different requirements and classification cases. The paper presents the validation of this E-nose prototype when used to identify three gas samples, namely, alcohol, butane and cigarette smoke. At the same time, it discusses the discriminative abilities of the prototype for the identification of alcohol, acetone and a mixture of them. In this respect, the selection of the appropriate type and number of gas sensors, as well as obtaining excellent discriminative abilities with a miniaturized design and minimal computation time, are all drivers for such implementation. Design/methodology/approach The suggested prototype contains two main parts: hardware (low-cost components) and software (Machine Learning). An interconnection printed circuit board, a Raspberry Pi and a sensor chamber with the sensor array board make up the first part. Eight sensors were put to the test to see how effective and feasible they were for the classification task at hand, and then the bare minimum of sensors was chosen. The second part consists of machine learning algorithms designed to ensure data acquisition and processing. These algorithms include feature extraction, dimensionality reduction and classification. To perform the classification task, two features taken from the sensors’ transient response were used. Findings Results reveal that the system presents high discriminative ability. The K-nearest neighbor (KNN) and support vector machine radial basis function based (SVM-RBF) classifiers both achieved 97.81% and 98.44% mean accuracy, respectively. These results were obtained after data dimensionality reduction using linear discriminant analysis, which is more effective in terms of discrimination power than principal component analysis. A repeated stratified K-cross validation was used to train and test five different machine learning classifiers. The classifiers were each tested on sets of data to determine their accuracy. The SVM-RBF model had high, stable and consistent accuracy over many repeats and different data splits. The total execution time for detection and identification is about 10 s. Originality/value Using information extracted from transient response of the sensors, the system proved to be able to accurately classify the gas types only in three out of the eight MQ-X gas sensors. The training and validation results of the SVM-RBF classifier show a good bias-variance trade-off. This proves that the two transient features are sufficiently efficient for this classification purpose. Moreover, all data processing tasks are performed by the Raspberry Pi, which shows real-time data processing with miniaturized architecture and low prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮豆芽完成签到 ,获得积分10
2秒前
jitianxing发布了新的文献求助10
6秒前
南风完成签到 ,获得积分10
16秒前
CipherSage应助聪慧芷巧采纳,获得10
17秒前
nano_yan完成签到,获得积分10
39秒前
勤劳的颤完成签到 ,获得积分10
40秒前
澄子完成签到 ,获得积分10
43秒前
43秒前
Microgan完成签到,获得积分10
46秒前
先锋完成签到 ,获得积分10
56秒前
xiaofeixia完成签到 ,获得积分10
58秒前
火星上小土豆完成签到 ,获得积分10
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
zhiwei完成签到 ,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
ECHO完成签到,获得积分10
1分钟前
maclogos完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lynn完成签到 ,获得积分10
1分钟前
mf2002mf完成签到 ,获得积分10
1分钟前
科研通AI2S应助bai采纳,获得10
1分钟前
海阔天空完成签到,获得积分0
1分钟前
1分钟前
聪慧芷巧发布了新的文献求助10
1分钟前
cugwzr完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
科研通AI2S应助bai采纳,获得10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Lucas应助miaolingcool采纳,获得10
2分钟前
dominic12361完成签到 ,获得积分10
2分钟前
少女徐必成完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
miaolingcool发布了新的文献求助10
2分钟前
2分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
zx完成签到 ,获得积分10
2分钟前
miaolingcool完成签到,获得积分10
2分钟前
xz完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626