清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A WSN and vision based smart, energy efficient, scalable, and reliable parking surveillance system with optical verification at edge for resource constrained IoT devices

可扩展性 物联网 计算机科学 GSM演进的增强数据速率 资源(消歧) 嵌入式系统 能量(信号处理) 实时计算 计算机网络 人工智能 数据库 统计 数学
作者
Shreeram Hudda,Rishabh Barnwal,Abhishek Khurana,K. Haribabu
出处
期刊:Internet of things [Elsevier BV]
卷期号:28: 101346-101346
标识
DOI:10.1016/j.iot.2024.101346
摘要

As urbanization accelerates, the demand for efficient parking surveillance solutions has increased. However, existing solutions often face challenges related to energy consumption, scalability, and reliability. This paper introduces a smart hybrid parking surveillance system integrating wireless sensor networks (WSNs) with vision based solution at the edge for resource constrained IoT devices to address these challenges. The solution leverages WSNs for periodic readings of parking space occupancy and introduces a low power sleep mode in the network for energy efficiency, along with optical verification strategies using computer vision models like R-CNN and Faster R-CNN FPN on ResNet50 and MobileNetv2 backbones for distinguishing between true and false positives in the WSN data for a greater accuracy in parking space occupancy. The system utilizes edge for computing on edge servers resulting in increased responsiveness of the system, reduced data transmission and real time processing of data. The proposed solution is formulated in such a way that it automatically switches between WSN and vision based sensing resulting in less energy consumption and longer lifespan of the system without compromising on accuracy. Through experimental results it is observed that models trained on the MobileNetv2 backbone demonstrated at least twice faster for both processing the images and training compared to those models trained on the ResNet backbone. On the other hand, both Faster R-CNN FPN (input resolution: 1440) and R-CNN (input resolution: 128) models trained on the MobileNetv2 backbone have slightly lower accuracies than the same models trained on the ResNet50 backbone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风完成签到 ,获得积分10
7秒前
CipherSage应助聪慧芷巧采纳,获得10
8秒前
nano_yan完成签到,获得积分10
30秒前
勤劳的颤完成签到 ,获得积分10
31秒前
澄子完成签到 ,获得积分10
34秒前
34秒前
Microgan完成签到,获得积分10
37秒前
先锋完成签到 ,获得积分10
47秒前
xiaofeixia完成签到 ,获得积分10
49秒前
火星上小土豆完成签到 ,获得积分10
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
zhiwei完成签到 ,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
ECHO完成签到,获得积分10
1分钟前
maclogos完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lynn完成签到 ,获得积分10
1分钟前
mf2002mf完成签到 ,获得积分10
1分钟前
科研通AI2S应助bai采纳,获得10
1分钟前
海阔天空完成签到,获得积分0
1分钟前
1分钟前
聪慧芷巧发布了新的文献求助10
1分钟前
cugwzr完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
科研通AI2S应助bai采纳,获得10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Lucas应助miaolingcool采纳,获得10
1分钟前
dominic12361完成签到 ,获得积分10
1分钟前
少女徐必成完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
miaolingcool发布了新的文献求助10
2分钟前
2分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
zx完成签到 ,获得积分10
2分钟前
miaolingcool完成签到,获得积分10
2分钟前
xz完成签到 ,获得积分10
2分钟前
栗子完成签到 ,获得积分10
2分钟前
gmc完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626