A review of the-state-of-the-art in data-driven approaches for building energy prediction

预测建模 过程(计算) 计算机科学 数据驱动 能量(信号处理) 特征(语言学) 财产(哲学) 数据挖掘 数据科学 机器学习 工业工程 人工智能 工程类 哲学 操作系统 认识论 统计 语言学 数学
作者
Ying Sun,Fariborz Haghighat,Benjamin C. M. Fung
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:221: 110022-110022 被引量:319
标识
DOI:10.1016/j.enbuild.2020.110022
摘要

Building energy prediction plays a vital role in developing a model predictive controller for consumers and optimizing energy distribution plan for utilities. Common approaches for energy prediction include physical models, data-driven models and hybrid models. Among them, data-driven approaches have become a popular topic in recent years due to their ability to discover statistical patterns without expertise knowledge. To acquire the latest research trends, this study first summarizes the limitations of earlier reviews: seldom present comprehensive review for the entire data-driven process for building energy prediction and rarely summarize the input updating strategies when applying the trained data-driven model to multi-step energy prediction. To overcome these gaps, this paper provides a comprehensive review on building energy prediction, covering the entire data-driven process that includes feature engineering, potential data-driven models and expected outputs. The distribution of 105 papers, which focus on building energy prediction by data-driven approaches, are reviewed over data source, feature types, model utilization and prediction outputs. Then, in order to implement the trained data-driven models into multi-step prediction, input updating strategies are reviewed to deal with the time series property of energy related data. Finally, the review concludes with some potential future research directions based on discussion of existing research gaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5476完成签到,获得积分10
3秒前
鸣笛应助Rhan采纳,获得10
3秒前
所所应助不爱吃姜采纳,获得10
5秒前
5秒前
我是老大应助matt采纳,获得10
6秒前
霹雳小土豆-完成签到,获得积分0
7秒前
Jasper应助happy采纳,获得10
8秒前
喜悦的母鸡完成签到,获得积分10
9秒前
太阳发布了新的文献求助10
10秒前
11秒前
qqq完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
烟花应助糊涂的MJ采纳,获得10
13秒前
晓颍双子发布了新的文献求助10
16秒前
17秒前
子车茗应助zxy采纳,获得20
17秒前
外向电灯胆完成签到,获得积分10
18秒前
鸡蛋仔完成签到 ,获得积分10
18秒前
jackscu应助称心的大米采纳,获得30
19秒前
半分甜发布了新的文献求助10
19秒前
qqq发布了新的文献求助10
21秒前
zhangfan发布了新的文献求助10
22秒前
22秒前
23秒前
乐平KYXK应助wwwei采纳,获得10
23秒前
23秒前
一一应助谷雨采纳,获得10
24秒前
欢呼篮球发布了新的文献求助30
24秒前
25秒前
25秒前
ccalvintan完成签到,获得积分10
25秒前
28秒前
Owen应助莫之白采纳,获得10
28秒前
累狗刘完成签到,获得积分10
28秒前
WHHEY发布了新的文献求助10
28秒前
BEIBEI应助开放的大侠采纳,获得10
30秒前
31秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897154
求助须知:如何正确求助?哪些是违规求助? 3441069
关于积分的说明 10819764
捐赠科研通 3166034
什么是DOI,文献DOI怎么找? 1749137
邀请新用户注册赠送积分活动 845143
科研通“疑难数据库(出版商)”最低求助积分说明 788434