Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self‐Powered Mechanosensational System

材料科学 纳米发生器 硅橡胶 压电 陶瓷 压力(语言学) 电压 光电子学 能量收集 纳米技术 功率(物理) 复合材料 电气工程 物理 工程类 哲学 量子力学 语言学
作者
Yuanzheng Zhang,Mengjun Wu,Quanyong Zhu,Feiyu Wang,Huanxin Su,Hui Li,Chunli Diao,Haiwu Zheng,Yonghui Wu,Zhong Lin Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:29 (42) 被引量:162
标识
DOI:10.1002/adfm.201904259
摘要

Abstract With the rapid development of the Internet of things (IoT), flexible piezoelectric nanogenerators (PENG) have attracted extensive attention for harvesting environmental mechanical energy to power electronics and nanosystems. Herein, porous piezoelectric fillers with samarium/titanium‐doped BiFeO 3 (BFO) are prepared by a freeze‐drying method, and then silicone rubber is filled into the microvoids of the piezoelectric ceramics, forming a unique structure based on silicone rubber matrix with uniformly distributed piezoelectric ceramic. When subjected to external force stimulation, compared with conventional piezocomposite films found on undoped BFO without a porous structure, the PENG possesses higher stress transfer ability and thus boosts output performance. The notable enhancement in the stress transfer ability and piezoelectric potential is proven by COMSOL simulations. The PENG can exhibit a maximum open‐circuit voltage ( V oc ) of 16 V and short‐circuit current ( I sc ) of 2.8 µA, which is 5.3 and 5.6 times higher than those of conventional piezocomposite films, respectively. The PENG can be used as a triggering signal to control the operation of fire extinguishers and household appliances. This work not only expands the application scope of lead‐free piezoelectric ceramic for energy harvesting, but also provides a novel solution for self‐powered mechanosensation and shows great potential application in IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得100
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得20
1秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
都是应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
终梦应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
拼搏惜金应助科研通管家采纳,获得10
2秒前
邓佳鑫Alan应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
wn2020wn发布了新的文献求助10
4秒前
cdercder应助lixd采纳,获得10
4秒前
xy完成签到,获得积分10
4秒前
动漫大师发布了新的文献求助10
5秒前
SYLH应助Epiphany采纳,获得50
6秒前
俏皮白云发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
amx完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
14秒前
112我的发布了新的文献求助10
14秒前
半夏发布了新的文献求助20
14秒前
纯真寄云发布了新的文献求助10
15秒前
boron发布了新的文献求助10
15秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
The acute effects of different percentages of blood flow restrictions on all-out back squat exercise 200
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Encyclopaedia Britannica 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824635
求助须知:如何正确求助?哪些是违规求助? 3366892
关于积分的说明 10443443
捐赠科研通 3086239
什么是DOI,文献DOI怎么找? 1697792
邀请新用户注册赠送积分活动 816541
科研通“疑难数据库(出版商)”最低求助积分说明 769761