Research on defect identification of carbon fiber composite materials based on ultrasonic phased array

材料科学 复合材料 复合数 超声波传感器 相控阵 鉴定(生物学) 碳纤维 纤维 碳纤维复合材料 声学 工程类 电气工程 物理 植物 天线(收音机) 生物
作者
Ziang Jing,Gaoshen Cai,Yu Xiang,Bingxu Wang
出处
期刊:Polymer Composites [Wiley]
被引量:2
标识
DOI:10.1002/pc.29033
摘要

Abstract It is more and more difficult to identify defects in carbon fiber composite materials due to the difficulty in making defect samples and the single signal analysis method. In order to better solve the problem of defect identification in carbon fiber composite materials, this study uses ultrasonic phased array equipment to quantitatively locate and detect carbon fiber composite laminates with embedded delamination defects, so as to more intuitively and effectively display the appearance of different delamination defects. The time domain analysis of the collected ultrasonic original signal and the time‐frequency domain analysis using wavelet packet are carried out. A total of 6 eigenvalues were extracted to reflect the ultrasonic signals of different delamination defects. By using genetic algorithm to optimize BP neural network, the recognition accuracy of delamination defects of different sizes is more than 95%, and the recognition accuracy of delamination defects of different depths is 100%, so as to realize the effective intelligent recognition of delamination defects of different sizes and depths of carbon fiber composites. This study is of great significance to improve the accuracy and reliability of defect identification of carbon fiber composite materials. Highlights The ultrasonic phased array equipment is used to quantitatively locate the carbon fiber composite laminates with embedded delamination defects, so that the appearance of different defects can be displayed more intuitively and effectively. Using time domain analysis and time‐frequency domain analysis based on wavelet packet, the combination of the two can more comprehensively extract the effective features of the defect signal. The BP neural network is optimized by genetic algorithm, and the results can effectively and automatically identify different layered defects, which lays a good foundation for the rapid and accurate identification of more defects in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研顺利1发布了新的文献求助10
刚刚
兔兔完成签到,获得积分10
1秒前
1秒前
小鱼在草里完成签到,获得积分10
1秒前
2秒前
如如完成签到,获得积分10
2秒前
英勇的碧完成签到,获得积分10
2秒前
2秒前
科研通AI6应助爱喝佳得乐采纳,获得10
3秒前
hardtime完成签到,获得积分20
3秒前
3秒前
3秒前
小马甲应助小榕采纳,获得10
3秒前
老王完成签到,获得积分10
4秒前
4秒前
虎牙完成签到 ,获得积分10
4秒前
瘦瘦凌晴发布了新的文献求助10
5秒前
蓝桉发布了新的文献求助30
5秒前
jixuzhuixun完成签到 ,获得积分10
5秒前
sys完成签到,获得积分10
5秒前
5秒前
5秒前
田様应助简单的卿采纳,获得10
5秒前
泡泡茶壶发布了新的文献求助10
6秒前
四叶草完成签到 ,获得积分10
6秒前
楊書銘完成签到 ,获得积分10
6秒前
FashionBoy应助祖念真采纳,获得50
6秒前
SciGPT应助张础锐采纳,获得10
7秒前
z脏脏包关注了科研通微信公众号
7秒前
香蕉觅云应助外向的摇伽采纳,获得10
7秒前
Criminology34应助OK佛采纳,获得10
8秒前
8秒前
充电宝应助want采纳,获得10
8秒前
hardtime发布了新的文献求助10
8秒前
今后应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084160
求助须知:如何正确求助?哪些是违规求助? 4300949
关于积分的说明 13401291
捐赠科研通 4125208
什么是DOI,文献DOI怎么找? 2259361
邀请新用户注册赠送积分活动 1263549
关于科研通互助平台的介绍 1197607