Python(编程语言)
工具箱
计算机科学
文档
人工神经网络
源代码
反问题
理论计算机科学
缩小
反向
偏微分方程
人工智能
程序设计语言
数学
几何学
数学分析
作者
Wei Peng,Jun Zhang,Weien Zhou,Xiaoyu Zhao,Wen Yao,Xiaoqian Chen
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:14
标识
DOI:10.48550/arxiv.2107.04320
摘要
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems modeled by Partial Differential Equations (PDEs). This paper introduces IDRLnet, a Python toolbox for modeling and solving problems through PINN systematically. IDRLnet constructs the framework for a wide range of PINN algorithms and applications. It provides a structured way to incorporate geometric objects, data sources, artificial neural networks, loss metrics, and optimizers within Python. Furthermore, it provides functionality to solve noisy inverse problems, variational minimization, and integral differential equations. New PINN variants can be integrated into the framework easily. Source code, tutorials, and documentation are available at \url{https://github.com/idrl-lab/idrlnet}.
科研通智能强力驱动
Strongly Powered by AbleSci AI