已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiagent Federated Deep-Reinforcement-Learning-Based Collaborative Caching Strategy for Vehicular Edge Networks

计算机科学 强化学习 延迟(音频) 人气 服务器 GSM演进的增强数据速率 马尔可夫决策过程 计算机网络 分布式计算 边缘计算 边缘设备 内容交付 马尔可夫过程 人工智能 电信 操作系统 云计算 统计 社会心理学 数学 心理学
作者
Honghai Wu,Baibing Wang,Huahong Ma,Xiaohui Zhang,Ling Xing
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (14): 25198-25212 被引量:5
标识
DOI:10.1109/jiot.2024.3392329
摘要

With the rapid advancement of in-vehicle communication technology, vehicular edge caching has garnered considerable attention as a pivotal technology to improve the efficiency of data transmission. However, existing studies often overlook the issues of increased average content access latency and decreased caching hit rate, stemming from the conflict between limited storage space in in-vehicle edge servers and vehicle mobility. To address these issues, this paper proposes a Multi-agent Federated Deep Reinforcement Learning based Collaborative Caching Strategy (MFDRL-CCS), leveraging Vehicle-to-Vehicle (V2V) communications. Specifically, we first perform vehicle connectivity prediction based on Recurrent Neural Network (RNN) considering the characteristics of vehicle nodes and their interrelations. Then, the optimal caching vehicle is selected based on the connectivity between vehicle nodes and the density of vehicle nodes. Meanwhile, a Multi-Head Attention Popularity Prediction (MHAPP) model is also constructed, which amalgamates multi-dimensional features, including historical popularity, social relationships, and geographic location, to predict content popularity. Finally, the edge collaborative caching model is formulated as a Markov Decision Process (MDP). Under the multi-agent competitive deep Q-learning framework, each vehicle learns the optimal caching strategy through an independent Q-network to maximize long-term rewards, and uses federated learning to train the caching replacement algorithm in a distributed manner. Compared to existing caching policies, the caching policy proposed in this paper improves the caching hit rate by approximately 19.8% and reduces the content access latency by about 12.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王卫完成签到,获得积分10
刚刚
所所应助跑快点采纳,获得10
3秒前
3秒前
yearluren完成签到,获得积分10
3秒前
4秒前
虔三愿发布了新的文献求助10
4秒前
肾宝发布了新的文献求助10
6秒前
6秒前
7秒前
所所应助李嘉怡采纳,获得10
11秒前
11秒前
LL发布了新的文献求助10
13秒前
dodo应助Kevin采纳,获得300
14秒前
yun完成签到 ,获得积分10
14秒前
着急的青枫应助今我来思采纳,获得10
15秒前
XStars10发布了新的文献求助10
15秒前
Gouki完成签到,获得积分20
17秒前
18秒前
19秒前
小二郎应助Rita采纳,获得100
19秒前
Ava应助聪明的青雪采纳,获得10
20秒前
21秒前
NLJY完成签到,获得积分10
22秒前
kfxs发布了新的文献求助10
23秒前
23秒前
思源应助大方泥猴桃采纳,获得10
24秒前
桥西发布了新的文献求助10
25秒前
26秒前
27秒前
28秒前
recardo发布了新的文献求助10
28秒前
30秒前
31秒前
李健的小迷弟应助海天采纳,获得10
32秒前
32秒前
甜蜜发带发布了新的文献求助10
32秒前
谢耳朵000发布了新的文献求助10
32秒前
张k关注了科研通微信公众号
33秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832832
求助须知:如何正确求助?哪些是违规求助? 4137405
关于积分的说明 12806529
捐赠科研通 3880516
什么是DOI,文献DOI怎么找? 2134283
邀请新用户注册赠送积分活动 1154374
关于科研通互助平台的介绍 1052843