亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strictly Proper Scoring Rules, Prediction, and Estimation

评分规则 概率逻辑 范畴变量 数学 分位数 单变量 可解释性 不精确概率 概率分布 人工智能 计算机科学 机器学习 数学优化 计量经济学 多元统计 统计
作者
Tilmann Gneiting,Adrian E. Raftery
标识
DOI:10.1198/016214506000001437
摘要

Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distributionF if he or she issues the probabilistic forecast F, rather than G ≠ F. It is strictly proper if the maximum is unique. In prediction problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly proper scoring rules provide attractive loss and utility functions that can be tailored to the problem at hand. This article reviews and develops the theory of proper scoring rules on general probability spaces, and proposes and discusses examples thereof. Proper scoring rules derive from convex functions and relate to information measures, entropy functions, and Bregman divergences. In the case of categorical variables, we prove a rigorous version of the Savage representation. Examples of scoring rules for probabilistic forecasts in the form of predictive densities include the logarithmic, spherical, pseudospherical, and quadratic scores. The continuous ranked probability score applies to probabilistic forecasts that take the form of predictive cumulative distribution functions. It generalizes the absolute error and forms a special case of a new and very general type of score, the energy score. Like many other scoring rules, the energy score admits a kernel representation in terms of negative definite functions, with links to inequalities of Hoeffding type, in both univariate and multivariate settings. Proper scoring rules for quantile and interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and to cross-validation, and propose a novel form of cross-validation known as random-fold cross-validation. A case study on probabilistic weather forecasts in the North American Pacific Northwest illustrates the importance of propriety. We note optimum score approaches to point and quantile estimation, and propose the intuitively appealing interval score as a utility function in interval estimation that addresses width as well as coverage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anne发布了新的文献求助10
3秒前
传奇3应助anne采纳,获得10
18秒前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
科研通AI5应助倪妮采纳,获得10
2分钟前
鱼儿游完成签到 ,获得积分10
3分钟前
好运来完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
倪妮发布了新的文献求助10
3分钟前
3分钟前
白柏233完成签到,获得积分10
3分钟前
木木圆发布了新的文献求助10
3分钟前
顾矜应助木木圆采纳,获得10
4分钟前
ZXneuro完成签到,获得积分10
4分钟前
小二郎应助Viiigo采纳,获得10
4分钟前
5分钟前
Li发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Tree_QD完成签到 ,获得积分10
5分钟前
bkagyin应助有魅力发卡采纳,获得10
5分钟前
浮游应助xuan采纳,获得10
5分钟前
Li发布了新的文献求助10
5分钟前
6分钟前
6分钟前
沉静沛芹完成签到,获得积分20
6分钟前
沉静沛芹发布了新的文献求助30
6分钟前
小新小新完成签到 ,获得积分10
6分钟前
Li完成签到,获得积分10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
从容芮应助科研通管家采纳,获得50
7分钟前
7分钟前
熊熊完成签到,获得积分10
7分钟前
熊熊发布了新的文献求助20
7分钟前
8分钟前
xuan发布了新的文献求助10
8分钟前
8分钟前
松松完成签到 ,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149006
求助须知:如何正确求助?哪些是违规求助? 4345196
关于积分的说明 13530225
捐赠科研通 4187423
什么是DOI,文献DOI怎么找? 2296270
邀请新用户注册赠送积分活动 1296643
关于科研通互助平台的介绍 1240671