Efficient on-demand design of fiber optic vibration sensor with a symmetric bidirectional neural network

人工神经网络 光纤 振动 计算机科学 光纤传感器 无线传感器网络 电子工程 声学 工程类 物理 电信 人工智能 计算机网络
作者
Shengjie Cao,Jiandong Bai,Yuanbin Jin,Yongqiu Zheng,Nan Li,Chenyang Xue
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (9): 14279-14290
标识
DOI:10.1109/jsen.2024.3377197
摘要

Fiber optic sensors, prized for their light weight, compact size, high temperature resilience and resistance to electromagnetic interference, find extensive utility in various measurement applications. The performance of these sensors is primarily contingent on their sensitive units, with distinct structures of these units yielding varied performance outcomes. Traditional design methods primarily rely on finite element simulation and optimization, which are subjective and inefficient. Thus, the efficient on-demand design of sensitive structures is essential for different application scenarios. Here, we present a novel approach for both forward performance prediction and inverse structure design employing deep learning techniques based on symmetric bidirectional neural networks, with fiber optic vibration sensors serving as a design example. The proposed method can address the non-unique solution in traditional deep learning techniques for inverse design of three-dimensional (3D) complex structures. By learning the underlying relationships between complex non-intuitive sensitive structures and their performances, the approach can eliminate the need for numerous costly calculations that heavily depend on human experience or intuition. Furthermore, compared to the response surface optimization method, this approach saves 21.1 times the computation time and has an accuracy improvement of 34.6% when dealing with six samples. The results show that the efficiency of fiber optic sensor design can be significantly improved by employing this novel deep learning technique, which offers new insights for the rapid advancement of the fiber optic sensing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小虎完成签到,获得积分10
1秒前
姚齐完成签到,获得积分10
1秒前
是真的不吃鱼完成签到,获得积分20
2秒前
Elliot_315发布了新的文献求助30
2秒前
2秒前
我有一只羊完成签到,获得积分10
3秒前
清禾发布了新的文献求助30
3秒前
5秒前
顾矜应助1111采纳,获得10
5秒前
单薄忆梅发布了新的文献求助10
6秒前
愉快之槐完成签到,获得积分10
7秒前
lin完成签到,获得积分10
8秒前
李爱国应助laojian采纳,获得10
8秒前
linyu发布了新的文献求助10
9秒前
9秒前
9秒前
Young完成签到,获得积分10
10秒前
10秒前
shun完成签到,获得积分10
11秒前
嗯嗯嗯完成签到,获得积分10
11秒前
金蛋蛋发布了新的文献求助10
12秒前
乐乐应助云隐采纳,获得10
12秒前
Yi发布了新的文献求助10
12秒前
lr完成签到 ,获得积分10
12秒前
外向幻露完成签到,获得积分10
13秒前
芜湖发布了新的文献求助10
13秒前
学术laji发布了新的文献求助10
14秒前
明明发布了新的文献求助10
14秒前
chy发布了新的文献求助10
15秒前
点凌蝶完成签到,获得积分10
15秒前
啊凡完成签到 ,获得积分10
15秒前
15秒前
Akim应助吱哦周采纳,获得10
15秒前
16秒前
小蓝完成签到,获得积分10
16秒前
深情安青应助拜了个拜采纳,获得10
17秒前
上官若男应助baoyin_hexige采纳,获得100
17秒前
摸鱼鱼完成签到,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383379
关于积分的说明 10529293
捐赠科研通 3103468
什么是DOI,文献DOI怎么找? 1709269
邀请新用户注册赠送积分活动 823044
科研通“疑难数据库(出版商)”最低求助积分说明 773769