基因组
生物
RNA编辑
卷柏属
细胞器
核糖核酸
遗传学
基因组编辑
计算生物学
基因
植物
作者
Jae Soon Kang,Jigao Yu,Xian‐Chun Zhang,Qiao‐Ping Xiang
摘要
Abstract Extensive C‐to‐U editing has been reported from plastid genomes (plastomes) and mitochondrial genomes (mitogenomes) of spikemoss. While “reverse” U‐to‐C editing was recorded in other seed‐free plants such as hornworts, quillworts, and ferns, it was not observed in spikemosses. However, no comprehensive study on the association between RNA editing and other genomic features was conducted for the organelle genomes of spikemosses. Here, we report thousands of C‐to‐U editing sites from plastomes and mitogenomes of two species: 1767 and 2394 edits in Selaginella remotifolia , and 4091 and 2786 edits in Selaginella nipponica , respectively. Comparative analyses revealed two different editing frequencies among plastomes, but one similar frequency in mitogenomes. The different editing frequency in the Selaginella organelle genomes is related to the nonsynonymous substitution rate and the genome structural complexity. The high guanine and cytosine (GC) content caused by GC‐biased mutations in organelle genomes might be related to the absence of U‐to‐C editing in Selaginellaceae. Using RNA‐seq and whole‐genome data, we screened the pentatricopeptide repeat (PPR) family and discovered that the number of aspartic acid–tyrosine–tryptophan (DYW) domain‐containing PPR proteins corresponded roughly to the editing abundance in the Selaginella organelle genomes. Consequently, we hypothesize that associated evolution among RNA editing, GC‐biased mutation in organelle genomes, and the PPR protein family encoded in the nuclear genome, is probably triggered by the aberrant DNA repair system in Selaginellaceae. Our study provides new insights into the association between organelle and nuclear genomes in Selaginellaceae, which would contribute to understanding the evolution of post‐transcriptional modifications of organelle genomes in land plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI