RAGE-Net: Enhanced retinal vessel segmentation U-shaped network using Gabor convolution

分割 计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 视网膜 愤怒(情绪) Gabor滤波器 网(多面体) 计算机视觉 神经科学 数学 人工神经网络 生物 特征提取 医学 眼科 几何学
作者
Chongling Yang,Yaorui Tang,Hong Peng,Xiaohui Luo
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:153: 104643-104643
标识
DOI:10.1016/j.dsp.2024.104643
摘要

Extracting vessel morphology from fundus images is pivotal in acquiring pathological insights and enabling early diagnosis of retinal disorders. Manual segmentation of retinal vessels requires a high degree of expertise and is notably time-intensive. Although existing deep learning techniques for retinal vessel segmentation predominantly hinge on U-shaped convolutional neural networks, significant headway has been made, complexities persist in delineating faint, low-contrast vessels amidst noisy backgrounds. To confront these challenges, we propose an innovative U-shaped convolutional neural network fortified with oriented priors, labeled as the Receptive Field Aggregating Gabor Enhance Network (RAGE-Net). We revamp the conventional U-shaped convolutional network with a foundation in Gabor wavelet and Gabor convolutional network, introducing a Gabor Matching Enhance Architecture (GMEA) amalgamated into the U-shaped convolutional network. This architecture comprises two distinct modules. Initially, a Dual-scale Gabor Enhance Module (DGEB) is introduced to bolster vessel continuity and effectively fortify delicate vessels by integrating oriented feature enhancement through Gabor convolution. Subsequently, a Receptive Field Pyramid Module (RPM) is proposed to supplant the escalation of scale count in the Gabor filter bank for vessel alignment, also serving as feature fusion to enhance the network's comprehensive vessel discernment. In comparison to U-Net, our model boasts fewer parameters and surpasses in terms of sensitivity, accuracy, and F1 score on the DRIVE dataset by 3.58%, 0.34%, and 2.29%, respectively. Our model showcases stellar performance across three public datasets: DRIVE, STARE, and CHASE_DB1, with sensitivity values of 0.8172, 0.8126, and 0.8540 and accuracy figures of 0.9708, 0.9725, and 0.9757, respectively. The analysis on three datasets reveals that our model demonstrates distinct strengths in AUC and Se as a result of integrating GMEA, which comprises RPM and DGEB, into U-shaped networks. However, it does not reduce overall accuracy to improve the model's ability to perceive weak contrast and small blood vessels. While maintaining superior Acc, our model also demonstrates advancements in Sp and F1 score, indicating a balanced progression in multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一行白鹭上青天完成签到 ,获得积分10
4秒前
ajiduo发布了新的文献求助10
5秒前
panda完成签到,获得积分10
6秒前
6秒前
7秒前
邓代容完成签到 ,获得积分10
8秒前
稳重的秋天完成签到,获得积分10
8秒前
陈小青完成签到 ,获得积分10
9秒前
shamy夫妇完成签到,获得积分10
10秒前
称心不尤完成签到 ,获得积分10
11秒前
莉莉子发布了新的文献求助30
12秒前
温暖的碧蓉完成签到 ,获得积分10
16秒前
serenity711完成签到 ,获得积分10
16秒前
yy完成签到 ,获得积分10
18秒前
科研通AI5应助云渺采纳,获得10
19秒前
听寒完成签到,获得积分10
19秒前
lemon完成签到 ,获得积分10
19秒前
00完成签到 ,获得积分10
20秒前
Yolo完成签到 ,获得积分10
20秒前
研友_LMBAXn完成签到,获得积分10
23秒前
luan完成签到,获得积分10
23秒前
高贵宛海完成签到,获得积分10
24秒前
fei菲飞完成签到,获得积分10
25秒前
无心的天真完成签到 ,获得积分10
26秒前
拼搏一曲完成签到 ,获得积分10
26秒前
共享精神应助莉莉子采纳,获得50
29秒前
Ryan完成签到 ,获得积分10
29秒前
innocent完成签到,获得积分10
32秒前
腾腾完成签到 ,获得积分10
33秒前
ira完成签到,获得积分10
33秒前
33秒前
江幻天完成签到,获得积分10
35秒前
golfgold完成签到,获得积分10
35秒前
默存完成签到,获得积分10
37秒前
37秒前
Dave完成签到,获得积分10
39秒前
玩命的小虾米完成签到 ,获得积分10
40秒前
斯文的斩完成签到,获得积分10
40秒前
鳗鱼落雁完成签到 ,获得积分10
40秒前
小豆豆严发布了新的文献求助10
42秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833944
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492766
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859