Entropy Production Analysis for S-Characteristics of a Pump Turbine

尾水管 熵产生 机械 涡轮机 套管 湍流 熵(时间箭头) 入口 物理 环境科学 地质学 机械工程 工程类 热力学 石油工程
作者
Ruzhi Gong,Naming Qi,H J Wang,A. L. Chen,D Q Qin
出处
期刊:Journal of Applied Fluid Mechanics [Isfahan University of Technology]
卷期号:10 (6): 1657-1668 被引量:16
标识
DOI:10.29252/jafm.73.245.27675
摘要

Due to the S-shape characteristics and the complicated flow in pump turbine, there may be serious instability when the pump-storage power plant starts. In order to conduct further study on the energy dissipation in hydraulic turbine, three dimensional incompressible steady state simulations were applied using SST k-ω turbulence model in this paper. It can be seen that the simulation results are consistent with experimental results well by the comparison of characteristic curves, and further analyses were made based on the entropy production theory. It is shown that the entropy production of spiral casing accounts for the minimum proportion in all components. The entropy production of cascades and runner differs a lot at different guide vane openings, and it features "S" characteristics with the increase of discharge. Then, the analysis of entropy production distribution on runner, blade cascades and draft tube was carried out at the 10mm guide vane opening. It was found that the losses in guide vane space is much higher than that of stay vane space and the losses are mainly in the tail area of stay vanes and vaneless space. The losses mainly occurs in the leading edges and the trailing edges of blades. The largest losses mainly lie at the wall of straight cone near the inlet in draft tube. The losses at the inner surface of elbow are also very high. The results indicate that the method based on the entropy production theory is very helpful to analyze and locate the losses in hydraulic turbine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小郭发布了新的文献求助10
刚刚
桐拾叁完成签到,获得积分10
刚刚
阿红完成签到,获得积分10
1秒前
nan发布了新的文献求助10
1秒前
M1982完成签到,获得积分20
2秒前
2秒前
李健的小迷弟应助sdl采纳,获得10
3秒前
后来完成签到,获得积分10
3秒前
鱼鱼完成签到,获得积分20
3秒前
4秒前
M先生完成签到,获得积分10
4秒前
玖Nine发布了新的文献求助10
5秒前
Fxxkme发布了新的文献求助10
5秒前
5秒前
CasterL发布了新的文献求助20
5秒前
香蕉觅云应助活力的秋荷采纳,获得10
5秒前
威武语堂完成签到,获得积分10
5秒前
啦啦啦发布了新的文献求助10
5秒前
爆米花应助lixinlong采纳,获得10
6秒前
丘比特应助狗十七采纳,获得10
6秒前
6秒前
阿卓西完成签到,获得积分10
6秒前
7秒前
迅速的尔琴完成签到,获得积分10
7秒前
66289完成签到 ,获得积分10
7秒前
fz发布了新的文献求助10
7秒前
李荷花完成签到 ,获得积分10
8秒前
李健的小迷弟应助忆水采纳,获得20
8秒前
小郭完成签到,获得积分10
9秒前
9秒前
情怀应助风无极采纳,获得10
9秒前
jachin发布了新的文献求助10
9秒前
lululu完成签到,获得积分10
9秒前
大个应助qqq采纳,获得10
9秒前
zhangxinan完成签到,获得积分10
10秒前
10秒前
迟早早发布了新的文献求助10
10秒前
Zyl完成签到,获得积分10
11秒前
俊逸沛山发布了新的文献求助10
11秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Polymer handbook 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The CRISPR–Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828888
求助须知:如何正确求助?哪些是违规求助? 3371283
关于积分的说明 10467355
捐赠科研通 3091144
什么是DOI,文献DOI怎么找? 1700767
邀请新用户注册赠送积分活动 818016
科研通“疑难数据库(出版商)”最低求助积分说明 770678