BI-RADS Category Prediction from Mammography Images and Mammography Radiology Reports Using Deep Learning: A Systematic Review

双雷达 乳腺摄影术 放射科 医学 医学物理学 人工智能 计算机科学 内科学 癌症 乳腺癌
作者
Ashish Shiwlani,Ahsan Ahmad,Muhammad Umar,Nasrullah Dharejo,Anoosha Tahir,Sheena Shiwlani
标识
DOI:10.58602/jics.v3i1.31
摘要

Women's health and mortality are significantly threatened by breast cancer, underscoring the importance of timely detection and treatment. Mammograms are an extremely useful and trustworthy diagnostic tool for early detection and screening of breast cancer. Mammograms based CADe systems have helped doctors in predicting BI-RADS categories and make better decisions and have somewhat reduced diagnostic errors. As deep learning algorithms advance, deep learning-based CADe systems become a practical means of resolving these problems and greatly improving the accuracy. The purpose of this review is to discuss the current techniques that have been developed for BI-RADS category classification in the fields of deep learning and convolutional neural networks. Additionally, the paper demonstrates the progression of models introduced in the past ten years. It also discusses the shortcomings of models proposed in the literature for the prediction of BI-RADS categories from mammography radiology reports and mammography images, in addition to summarizing the current challenges. Lastly, it proposes a novel multi-modal approach to predict the BI-RADS categories from radiology reports and mammography images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尉迟希望应助juniorsunny采纳,获得30
刚刚
刚刚
1秒前
莉莉发布了新的文献求助10
1秒前
传奇3应助温乘云采纳,获得10
1秒前
飛鳥发布了新的文献求助10
1秒前
CipherSage应助yinhe028采纳,获得20
1秒前
1秒前
2秒前
谢miumiu关注了科研通微信公众号
2秒前
科研通AI2S应助默默的西木采纳,获得10
2秒前
风子关注了科研通微信公众号
3秒前
3秒前
乐乐应助jh采纳,获得10
3秒前
CipherSage应助小样采纳,获得10
4秒前
haolei完成签到,获得积分10
4秒前
香蕉觅云应助silian采纳,获得20
4秒前
碳酸氢钠完成签到,获得积分10
4秒前
4秒前
可爱的函函应助Nemo采纳,获得10
4秒前
5秒前
玩命的安雁完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
6秒前
守藏发布了新的文献求助20
6秒前
小苹果发布了新的文献求助10
6秒前
成就丹雪发布了新的文献求助10
7秒前
齐文轩完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
烟花应助zffx6采纳,获得10
8秒前
8秒前
haolei发布了新的文献求助10
9秒前
枕星完成签到 ,获得积分10
9秒前
且慢完成签到,获得积分10
9秒前
9秒前
浮游应助lhr采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987