Dynamic Graph Transformer for Brain Disorder Diagnosis

计算机科学 变压器 图形 人工智能 理论计算机科学 工程类 电气工程 电压
作者
Ahsan Shehzad,Dongyu Zhang,Shuo Yu,Shagufta Abid,Feng Xia
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.05.24313048
摘要

Dynamic brain networks are crucial for diagnosing brain disorders, as they reveal changes in brain activity and connectivity over time. Previous methods exploit the sliding window approach on fMRI data to construct these networks. However, this approach encounters two major issues: fixed temporal length, which inadequately captures the temporal dynamics of brain activity, and global spatial scope, which introduces noise and reduces sensitivity to localized dysfunctions when applied across the entire brain. These issues can lead to inaccurate brain network representations, potentially resulting in misdiagnosis. To overcome these challenges, we propose BrainDGT, a dynamic Graph Transformer model that adaptively captures and analyzes modular brain activities for improved diagnosis of brain disorders. BrainDGT addresses the fixed temporal length issue by estimating adaptive brain states through deconvolution of the Hemodynamic Response Function (HRF), avoiding the constraints of fixed-size windows. It also addresses the global spatial scope issue by segmenting fMRI scans into functional modules based on established brain networks for detailed, module-specific analysis. The model employs a dual attention mechanism: graph-attention extracts structural features from dynamic brain network snapshots, while self-attention identifies significant temporal dependencies. These spatio-temporal features are adaptively fused into a unified representation for disorder classification. BrainDGT's effectiveness is validated through classification experiments on three real fMRI datasets ADNI, PPMI, and ABIDE demonstrating superior performance compared to state-of-the-art methods. BrainDGT improves brain disorder diagnosis by offering adaptive, localized analysis of dynamic brain networks, advancing neuroimaging and enabling more precise treatments in biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ完成签到,获得积分10
1秒前
1秒前
maorongfu456完成签到,获得积分10
1秒前
老迟到的可兰完成签到,获得积分10
1秒前
2123121321321发布了新的文献求助10
2秒前
听话的靖柏完成签到 ,获得积分0
2秒前
小七完成签到,获得积分10
3秒前
smottom应助狐尔莫采纳,获得10
3秒前
lalala发布了新的文献求助20
3秒前
dd完成签到 ,获得积分10
3秒前
ZN发布了新的文献求助10
4秒前
冷傲的如柏完成签到,获得积分10
4秒前
4秒前
顶刊在逃一作完成签到,获得积分10
4秒前
Emma发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
迟迟不吃吃完成签到 ,获得积分10
5秒前
杨佳于完成签到,获得积分10
6秒前
bkagyin应助怡然的烤鸡采纳,获得10
6秒前
6秒前
甜酒发布了新的文献求助10
7秒前
王壮壮完成签到,获得积分10
8秒前
Felix发布了新的文献求助10
8秒前
zzs喵完成签到,获得积分10
8秒前
布谷完成签到,获得积分10
8秒前
9秒前
怡然芷蝶完成签到,获得积分10
9秒前
明理溪灵发布了新的文献求助20
9秒前
是的发布了新的文献求助10
10秒前
酷炫的从雪完成签到,获得积分20
11秒前
李秋秋发布了新的文献求助10
11秒前
马里奥完成签到,获得积分10
11秒前
善良梦竹完成签到 ,获得积分10
11秒前
十七完成签到,获得积分10
12秒前
应俊完成签到 ,获得积分10
12秒前
TMOMOR应助mina采纳,获得20
12秒前
12秒前
硅负极发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740