亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A time-aware self-attention based neural network model for sequential recommendation

时间戳 计算机科学 嵌入 数据挖掘 编码器 协同过滤 人工智能 人工神经网络 机器学习 依赖关系(UML) 推荐系统 理论计算机科学 实时计算 操作系统
作者
Yihu Zhang,Bo Yang,Haodong Liu,Dongsheng Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109894-109894 被引量:9
标识
DOI:10.1016/j.asoc.2022.109894
摘要

Sequential recommendation is one of the hot research topics in recent years. Various sequential recommendation models have been proposed, of which Self-Attention (SA)-based models are shown to have state-of-the-art performance. However, most of the existing SA-based sequential recommendation models do not make use of temporal information, i.e., timestamps of user–item interactions, except for an initial attempt (Li et al., 2020). In this paper, we propose a Time-Aware Transformer for Sequential Recommendation (TAT4SRec), an SA-based neural network model which utilizes the temporal information and captures users’ preferences more precisely. TAT4SRec has two salient features: (1) TAT4SRec utilizes an encoder–decoder structure to model timestamps and interacted items separately and this structure appears to be a better way of making use of the temporal information. (2) in the proposed TAT4SRec, two different embedding modules are designed to transform continuous data (timestamps) and discrete data (item IDs) into embedding matrices respectively. Specifically, we propose a window function-based embedding module to preserve the continuous dependency contained in similar timestamps. Finally, extensive experiments demonstrate the effectiveness of the proposed TAT4SRec over various state-of-the-art MC/RNN/SA-based sequential recommendation models under several widely-used metrics. Furthermore, experiments are also performed to show the rationality of the different proposed structures and demonstrate the computation efficiency of TAT4SRec. The promising experimental results make it possible to apply TAT4SRec in various online applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heqiujing发布了新的文献求助10
6秒前
6秒前
AiHaraNeko完成签到,获得积分10
8秒前
SSS完成签到,获得积分10
9秒前
酷波er应助zzzxh采纳,获得10
18秒前
heqiujing完成签到,获得积分20
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得30
1分钟前
2分钟前
2分钟前
dkb发布了新的文献求助20
2分钟前
2分钟前
2分钟前
领导范儿应助烽烽烽采纳,获得30
2分钟前
舒服的觅夏完成签到,获得积分20
2分钟前
于洋完成签到 ,获得积分10
2分钟前
香蕉觅云应助dkb采纳,获得10
2分钟前
2分钟前
2分钟前
无花果应助krajicek采纳,获得10
2分钟前
2分钟前
2分钟前
烽烽烽发布了新的文献求助30
2分钟前
DocChen发布了新的文献求助10
2分钟前
小小怪发布了新的文献求助10
2分钟前
汉堡包应助烽烽烽采纳,获得10
2分钟前
斯文败类应助xujiale采纳,获得10
2分钟前
隐形曼青应助yahonyoyoyo采纳,获得10
2分钟前
2分钟前
2分钟前
Glitter完成签到 ,获得积分10
3分钟前
3分钟前
krajicek发布了新的文献求助10
3分钟前
3分钟前
zzzxh发布了新的文献求助10
3分钟前
3分钟前
xujiale发布了新的文献求助10
3分钟前
xujiale完成签到,获得积分10
3分钟前
3分钟前
yahonyoyoyo发布了新的文献求助10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843203
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540536
捐赠科研通 3106072
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823778
科研通“疑难数据库(出版商)”最低求助积分说明 774264