UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 编码器 卷积神经网络 加速 图像分割 推论 计算机视觉 语言学 操作系统 哲学
作者
Zongwei Zhou,Md Mahfuzur Rahman Siddiquee,Nima Tajbakhsh,Jianming Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1856-1867 被引量:2804
标识
DOI:10.1109/tmi.2019.2959609
摘要

The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects-an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANG完成签到 ,获得积分10
刚刚
xx完成签到,获得积分10
刚刚
hwezhu发布了新的文献求助10
刚刚
完美世界应助小张采纳,获得10
1秒前
今后应助momo采纳,获得10
1秒前
1秒前
小吴完成签到,获得积分10
2秒前
小酒窝周周完成签到 ,获得积分10
2秒前
2秒前
小蘑菇应助xhm采纳,获得10
2秒前
3秒前
年轻的问兰完成签到,获得积分10
3秒前
闪闪绮露完成签到,获得积分10
3秒前
Akim应助一包辣条采纳,获得30
3秒前
ysx发布了新的文献求助10
3秒前
lhl发布了新的文献求助10
4秒前
玩命的大神完成签到 ,获得积分10
4秒前
demo1发布了新的文献求助10
5秒前
小蘑菇应助陈昭琼采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
张较瘦关注了科研通微信公众号
7秒前
端庄棉花糖完成签到,获得积分10
7秒前
7秒前
7秒前
小明发布了新的文献求助10
8秒前
9秒前
9秒前
CodeCraft应助欣慰的盼芙采纳,获得10
9秒前
shi完成签到,获得积分20
9秒前
害羞聋五完成签到,获得积分10
9秒前
菲菲发布了新的文献求助10
9秒前
瞄零完成签到,获得积分10
10秒前
DFQZH发布了新的文献求助10
11秒前
自由的冰夏完成签到,获得积分10
11秒前
关森完成签到,获得积分20
11秒前
11秒前
SYLH应助心灵美的土豆采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765