Energy-Aware Device Scheduling for Joint Federated Learning in Edge-assisted Internet of Agriculture Things

计算机科学 边缘计算 GSM演进的增强数据速率 调度(生产过程) 边缘设备 分布式计算 能源消耗 稀缺 地铁列车时刻表 计算机网络 数学优化 人工智能 云计算 操作系统 生态学 数学 经济 生物 微观经济学
作者
Chong-Jen Yu,Shuaiqi Shen,Kuan Zhang,Hai Zhao,Yeyin Shi
标识
DOI:10.1109/wcnc51071.2022.9771547
摘要

Edge-assisted Internet of Agriculture Things (Edge-IoAT) connects massive smart devices managed by edge nodes to collect crop data for distributed computing, such as federated learning, to guide agricultural production. In Edge-IoAT, data are cooperatively collected by edge nodes and the server, i.e., vertically partitioned. In addition, sample size and distribution are different for edge nodes, i.e., horizontally partitioned. Existing federated learning frameworks are not applicable for Edge-IoAT because they do not consider both types of data partitioning simultaneously. Moreover, the excessive energy consumption may cause premature interruption of model training, and spectrum scarcity prevents a portion of edge nodes from communicating with the server. Given limited energy and communication resources, training accuracy relies on how to schedule devices. In this paper, we first propose a joint federated learning framework for Edge-IoAT to cope with both vertically and horizontally partitioned data. After that, we formulate an energy-aware device scheduling problem to assign communication resources to the optimal edge node subset for minimizing the global loss function. Then, we develop a greedy algorithm to find the optimal solution. Experiments in a Nebraska farm show that the proposed framework with energy-aware device scheduling achieves a fast convergence rate, low communication cost, and high modeling accuracy under resource constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得20
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
黄黄完成签到,获得积分0
2秒前
zzzz发布了新的文献求助10
2秒前
Bagpipe发布了新的文献求助10
3秒前
不爱吃鱼的猫完成签到,获得积分10
3秒前
Lucas应助liz采纳,获得10
5秒前
5秒前
noa发布了新的文献求助10
5秒前
辛子发布了新的文献求助10
6秒前
tt发布了新的文献求助10
6秒前
合适的灵枫完成签到,获得积分10
6秒前
6秒前
6秒前
xixi完成签到,获得积分10
7秒前
7秒前
7秒前
cherish_7宝完成签到,获得积分10
8秒前
8秒前
杭亦寒关注了科研通微信公众号
8秒前
君衡完成签到 ,获得积分10
8秒前
8秒前
songxu223发布了新的文献求助10
9秒前
huohuo完成签到,获得积分10
9秒前
白熊完成签到,获得积分20
9秒前
10秒前
10秒前
孤狼完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054