双功能
纳米团簇
催化作用
电催化剂
密度泛函理论
材料科学
合理设计
纳米技术
碳纤维
双功能催化剂
析氧
阴极
化学工程
电池(电)
氧还原反应
吸附
化学
氧化还原
阳极
Atom(片上系统)
电子结构
化学物理
混合功能
作者
Zhe Lu,Zhe Wang,Qitong Ye,Xiaoyan Jin,Ruojie Xu,Zhenbei Yang,Yipu Liu,Linxing Meng,Zhijuan Pan,Seong-Ju Hwang,Lei Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2026-01-31
标识
DOI:10.1021/acsnano.5c18441
摘要
High-entropy single atom (SA) catalysts (HESACs) represent a paradigm shift in electrocatalyst design, yet precise structural control and mechanistic understanding remain key challenges. Here, we report a porous carbon fiber-supported HESAC (ZnCoNiCuFe@PCF) that synergistically integrates five atomically dispersed M-N4 sites (M = Zn, Co, Ni, Cu, Fe) and Co6/Fe5 nanoclusters, creating unprecedented electronic interactions and maximizing high-entropy synergy. As a result, ZnCoNiCuFe@PCF exhibits outstanding bifunctional electrocatalytic activity for both oxygen reduction (oxygen reduction reaction (ORR)) and oxygen evolution reactions (OER), outperforming the benchmark Pt/C and RuO2 catalysts. Density functional theory calculations reveal that the unique combination of high-entropy atom sites and nanoclusters facilitates charge redistribution and optimizes the adsorption of key intermediates (OH*, O*), thereby accelerating the rate-limiting steps of ORR/OER. When deployed as the cathode in a zinc-air battery (ZAB), the catalyst delivers a peak power density of 240.9 mW cm-2 and exceptional cycling stability of over 2600 h (7800 cycles). This work provides fundamental insights into the rational design of HESACs by leveraging high-entropy and heterojunction effects, offering a robust platform for next-generation energy storage and conversion technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI