Transferable common feature space mining for fault diagnosis with imbalanced data

过度拟合 计算机科学 数据挖掘 特征学习 特征提取 模式识别(心理学) 人工智能 断层(地质) 自编码 学习迁移 特征(语言学) 机器学习 人工神经网络 深度学习 语言学 哲学 地震学 地质学
作者
Na Lü,Tao Yin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:156: 107645-107645 被引量:42
标识
DOI:10.1016/j.ymssp.2021.107645
摘要

Many deep transfer learning methods for fault diagnosis have been proposed in this decade. Some of the existing methods focus on addressing the problem of fault data scarcity and fault knowledge transfer across different domains with different number of samples. There is still much room to improve considering the best performance so far on imbalanced and transfer fault diagnosis. The existing researches apply synthetic data generation, weighted sample or cost and transfer learning techniques to solve the problem. However, the synthetic samples might not follow the true fault data distribution or exploit excessively over the available small data which could lead to model bias or overfitting. In addition, the value of the abundant normal condition data has not been well explored which may carry essential information for fault discrimination. To address these problems, a novel two stage transferable common feature space mining method for fault diagnosis is developed which is termed as Common Feature and Compare Net (CFCNet). The fault diagnosis task has been divided into two stages, common feature learning and fault category diagnosis. In the first stage, CFCNet trains a weakly supervised domain adaptive convolutional Autoencoder to learn the common features underlying multi-domain data, which makes efficient use of all the available data and is termed as Common Feature Net. In the second stage, the trained Common Feature Net and a Unique Feature Net is combined to construct a dual-channel feature extraction and comparison architecture. CFCNet could mine both the transferable common features and unique features of different faults. Based on a feature concatenation and similarity computation structure, CFCNet enables an efficient similarity estimation mechanism for fault diagnosis. Training strategy of few shot learning is adopted to train CFCNet which can balance the training progress instead of the imbalanced data. Extensive experiments have verified the superior performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的忆雪完成签到 ,获得积分10
刚刚
Zheng完成签到 ,获得积分10
3秒前
白色梨花完成签到 ,获得积分20
3秒前
白菜完成签到 ,获得积分10
5秒前
llll完成签到 ,获得积分10
6秒前
17秒前
zhangsan完成签到,获得积分10
17秒前
鞑靼完成签到 ,获得积分10
22秒前
儒雅的如松完成签到 ,获得积分10
24秒前
25秒前
gyx完成签到 ,获得积分10
25秒前
微暖发布了新的文献求助10
30秒前
dong完成签到 ,获得积分10
31秒前
顾矜应助偏偏采纳,获得10
31秒前
微笑枫叶发布了新的文献求助10
36秒前
欢喜的早晨完成签到,获得积分10
38秒前
滕皓轩发布了新的文献求助30
40秒前
shyxia完成签到 ,获得积分10
41秒前
41秒前
50秒前
mawenting完成签到 ,获得积分10
54秒前
微暖完成签到,获得积分0
55秒前
古炮完成签到,获得积分10
55秒前
水母大王发布了新的文献求助10
56秒前
LIU完成签到 ,获得积分10
1分钟前
fff完成签到 ,获得积分10
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
FUNG完成签到 ,获得积分10
1分钟前
1分钟前
ambrose37完成签到 ,获得积分10
1分钟前
liciky完成签到 ,获得积分10
1分钟前
zx完成签到 ,获得积分10
1分钟前
共享精神应助和谐的寒安采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
渺渺完成签到 ,获得积分10
1分钟前
Oracle应助hk1900采纳,获得20
1分钟前
水母大王给水母大王的求助进行了留言
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859