TET: An automated tool for evaluating suitable check-dam sites based on sediment trapping efficiency

分水岭 沉积物 环境科学 Python(编程语言) 水文学(农业) 计算机科学 工程类 地质学 岩土工程 操作系统 机器学习 古生物学
作者
Omid Rahmati,Hoda Ghasemieh,Mahmood Samadi,Zahra Kalantari,John P. Tiefenbacher,Omid Asadi Nalivan,Artemi Cerdà,Seid Saeid Ghiasi,Hamid Darabi,Ali Torabi Haghighi,Dieu Tien Bui
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:266: 122051-122051 被引量:8
标识
DOI:10.1016/j.jclepro.2020.122051
摘要

Sediment control is important for supplying clean water. Although check dams control sediment yield, site selection for check dams based on the sediment trapping efficiency (TE) is often complex and time-consuming. Currently, a multi-step trial-and-error process is used to find the optimal sediment TE for check dam construction, which limits this approach in practice. To cope with this challenge, we developed a user-friendly, cost- and time-efficient geographic information system (GIS)-based tool, the trap efficiency tool (TET), in the Python programming language. We applied the tool to two watersheds, the Hableh-Rud and the Poldokhtar, in Iran. To identify suitable sites for check dams, four scenarios (S1: TE ≥ 60%, S2: TE ≥ 70%, S3: TE ≥ 80%, S4: TE ≥ 90%) were tested. TET identified 189, 117, 96, and 77 suitable sites for building check dams in S1, S2, S3, and S4, respectively, in the Hableh-Rud watershed, and 346, 204, 156, and 60 sites in S1, S2, S3, and S4, respectively, in the Poldokhtar watershed. Evaluation of 136 existing check dams in the Hableh-Rud watershed indicated that only 10% and 5% were well-located and these were in the TE classes of 80–90% and ≥90%, respectively. In the Poldokhtar watershed, only 11% and 8% of the 207 existing check dams fell into TE classes 80–90% and ≥90%, respectively. Thus, the conventional approach for locating suitable sites at which check dams should be constructed is not effective at reaching suitable sediment control efficiency. Importantly, TET provides valuable insights for site selection of check dams and can help decision makers avoid monetary losses incurred by inefficient check-dam performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
大气乐儿发布了新的文献求助10
1秒前
MS903发布了新的文献求助10
2秒前
灵巧夜白完成签到,获得积分10
2秒前
3秒前
自由梦玉发布了新的文献求助10
3秒前
焦糖琥珀发布了新的文献求助10
4秒前
4秒前
踏实青丝发布了新的文献求助10
4秒前
细腻的机器猫关注了科研通微信公众号
4秒前
汉堡包应助凌晨洋采纳,获得10
4秒前
5秒前
乐乐应助qiuyue采纳,获得10
5秒前
6秒前
ZAJsci完成签到 ,获得积分10
6秒前
6秒前
Kim发布了新的文献求助10
6秒前
huco驳回了顾矜应助
7秒前
7秒前
包容雪巧发布了新的文献求助10
7秒前
JLY发布了新的文献求助10
7秒前
8秒前
zac发布了新的文献求助10
9秒前
阿媛呐发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
苏乘风发布了新的文献求助30
9秒前
宇宙法发布了新的文献求助10
10秒前
10秒前
司佳雨发布了新的文献求助10
10秒前
喜悦雨南发布了新的文献求助10
11秒前
无望幽月完成签到,获得积分10
11秒前
13秒前
14秒前
洋芋锅巴发布了新的文献求助10
14秒前
easycooking关注了科研通微信公众号
15秒前
杰杰完成签到,获得积分20
15秒前
彭于晏应助几欢采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486831
求助须知:如何正确求助?哪些是违规求助? 4586356
关于积分的说明 14408909
捐赠科研通 4516980
什么是DOI,文献DOI怎么找? 2475051
邀请新用户注册赠送积分活动 1460909
关于科研通互助平台的介绍 1433960