硅氧烷
共聚物
材料科学
高分子化学
亚甲基
差示扫描量热法
化学工程
有机化学
聚合物
化学
复合材料
热力学
物理
工程类
作者
Maria Cazacu,Carmen Racleş,Mihaela Alexandru,Aurelia Ioanid,Angelica Vlad
摘要
Abstract BACKGROUND: It is well known that, due to their extremely low polarity, polysiloxanes are incompatible with almost any organic system. This incompatibility leads to phase separation in mixed siloxane–organic systems. RESULTS: Three siloxane–organic copolymers, poly[(5,5′‐methylene‐bis‐salicylaldehyde)‐imine‐(1,3‐bis(propylene)tetramethyldisiloxane)] (Paz1), poly[(2,5‐dihydroxy‐1,4‐benzoquinone)‐imine‐(1,3‐bis(propylene)tetramethyldisiloxane)] (Paz2) and poly[1,3‐bis(propylene)tetramethyldisiloxane diamide] (Pam), were prepared by the reaction of 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane with appropriate organic partners (5,5′‐methylene‐bis‐salicylaldehyde, 2,5‐dihydroxy‐1,4‐benzoquinone and oxalyl chloride, respectively). The morphologies dictated by the incompatibility between siloxane and polar organic moieties were investigated using differential scanning calorimetry and scanning electron microscopy. The surface activity of the copolymers and water vapour sorption capacity were also measured. CONCLUSION: Even though the polar sequences are very short ones, the highly flexible siloxane‐containing sequence permits the self‐assembly of these into more or less polar domains. Such an organization influences the properties of the resulting materials, an important place being occupied by the surface properties. Copyright © 2009 Society of Chemical Industry
科研通智能强力驱动
Strongly Powered by AbleSci AI