Efficient identification of Alzheimer’s brain dynamics with Spatial-Temporal Autoencoder: A deep learning approach for diagnosing brain disorders

自编码 人工智能 脑电图 计算机科学 深度学习 模式识别(心理学) 神经影像学 大脑活动与冥想 机器学习 神经科学 心理学
作者
Ling‐Yun Wu,Quanfa Zhao,Jing Liu,Haitao Yu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 104917-104917 被引量:8
标识
DOI:10.1016/j.bspc.2023.104917
摘要

Alzheimer’s disease (AD) is a progressive neurological disorder seriously affecting cognitive and behavior abilities of the older people. Accurate and early diagnosis of AD is critical for improving the therapeutic effect and alleviate the clinical symptom. In this work, we proposed an automatic EEG-based diagnosis scheme for AD patients with deep learning methods. A Spatial-Temporal Autoencoder (STAE) framework with Convolutional Neural Network (CNN)- Long Short-Term-Memory (LSTM) generative model was designed to estimate latent factors of the observed oscillatory activity in the brain from multi-channels electroencephalogram (EEG) signals via unsupervised learning. Based on latent factor analysis, Alzheimer’s brain dynamics on single-trials were inferred and temporal evolution of latent brain state was analyzed in low-dimensional state space. The study mainly showed that: i) the brain state trajectories of AD patients were distinct from healthy subjects, resulting in different forms of ring manifolds and allowing to accurately identify AD; ii) experimental results demonstrated the efficiency and flexibility of the proposed deep learning-based diagnosis scheme, by which the classification of AD patients and the normal based on clinical EEG dataset achieved an accuracy of 96.30%, a sensitivity of 97.73% and a specificity of 94.69% with a multiple layer perception (MLP) classifier; iii) compared with other approaches for latent brain dynamics estimation, STAE exhibited superior performance with high accuracy of AD identification and strongly robust against instabilities in EEG recordings. The present results reveal the neuropathological mechanism of Alzheimer’s disease with brain dynamics variations and provide a feasible diagnosis tool for brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu完成签到,获得积分10
刚刚
刚刚
lyn_zhou完成签到,获得积分10
1秒前
zhaideqi7发布了新的文献求助10
1秒前
蜡笔小哐完成签到,获得积分10
1秒前
2秒前
youni.m发布了新的文献求助30
3秒前
欣喜电源完成签到,获得积分10
3秒前
ahtuz发布了新的文献求助10
3秒前
自由南珍发布了新的文献求助30
3秒前
4秒前
科研通AI2S应助亦犹未进采纳,获得10
6秒前
feifei发布了新的文献求助10
7秒前
7秒前
8秒前
Kitty发布了新的文献求助10
10秒前
10秒前
852应助zs采纳,获得10
10秒前
缓慢手机完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
郭郭郭完成签到,获得积分10
14秒前
14秒前
16秒前
华仔应助符聪采纳,获得10
17秒前
17秒前
18秒前
木子李发布了新的文献求助10
18秒前
bkagyin应助包容紫萍采纳,获得10
18秒前
二龙湖完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
搜集达人应助月岛滴滴采纳,获得10
20秒前
20秒前
immoral完成签到 ,获得积分10
21秒前
小二郎应助默默的映天采纳,获得10
21秒前
小杨发布了新的文献求助30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4563391
求助须知:如何正确求助?哪些是违规求助? 3987940
关于积分的说明 12348182
捐赠科研通 3658857
什么是DOI,文献DOI怎么找? 2016126
邀请新用户注册赠送积分活动 1050612
科研通“疑难数据库(出版商)”最低求助积分说明 938618