CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising

降噪 计算机科学 空格(标点符号) 状态空间 人工智能 数学 统计 操作系统
作者
Linxuan Li,W.W. Wei,Luyao Yang,Wenwen Zhang,Jieke Dong,Wei Zhao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.07930
摘要

Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, thereby decreasing potential health risks. However, dose reduction introduces additional noise and artifacts, adversely affecting image quality and clinical diagnosis. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to Normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. In recent years, the feasibility of applying deep learning methods to low-dose CT imaging has been demonstrated, leading to significant achievements. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's global modeling capability, enabling it to capture both local details and global context. Additionally, a Mamba-driven deep noise power spectrum (NPS) loss function was designed to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, while demonstrating statistically similar radiomics features to those of NDCT images (p > 0.05). The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LkD09n发布了新的文献求助10
1秒前
坦率的从波完成签到 ,获得积分10
3秒前
可口可乐发布了新的文献求助10
4秒前
袁泽完成签到,获得积分10
8秒前
科研通AI5应助lizhiqian2024采纳,获得10
10秒前
DDAIDN完成签到,获得积分10
11秒前
MRJJJJ完成签到,获得积分10
13秒前
nove999完成签到 ,获得积分10
13秒前
15秒前
16秒前
D-L@rabbit完成签到 ,获得积分10
18秒前
18秒前
EMMA发布了新的文献求助10
20秒前
20秒前
tsntn完成签到,获得积分10
22秒前
爆米花应助周小鱼采纳,获得10
23秒前
温暖的颜演完成签到 ,获得积分10
23秒前
Orchid发布了新的文献求助10
24秒前
认真的问枫完成签到 ,获得积分10
30秒前
CipherSage应助EMMA采纳,获得30
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
诸葛御风应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
34秒前
34秒前
夜白应助科研通管家采纳,获得20
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
无限的山水完成签到,获得积分10
35秒前
天天完成签到 ,获得积分10
39秒前
41秒前
专注的水壶完成签到 ,获得积分10
41秒前
43秒前
高贵的晓筠完成签到 ,获得积分10
44秒前
大个应助zhouzhou采纳,获得10
44秒前
tinydog完成签到,获得积分10
44秒前
可口可乐完成签到,获得积分10
45秒前
517完成签到 ,获得积分10
45秒前
彪壮的绮烟完成签到,获得积分10
46秒前
天天发布了新的文献求助10
46秒前
周小鱼发布了新的文献求助10
48秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726