A hybrid reliability assessment method based on health index construction and reliability modeling for rolling bearing

可靠性(半导体) 可靠性工程 过程(计算) 卷积神经网络 方位(导航) 计算机科学 工程类 人工智能 量子力学 操作系统 物理 功率(物理)
作者
Yuan‐Jian Yang,Chengyuan Ma,G Liu,Hao Lü,Le Dai,Jia‐Lun Wan,Junyu Guo
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (8): 4131-4146 被引量:2
标识
DOI:10.1002/qre.3630
摘要

Abstract The assessment of rolling bearing reliability is vital for ensuring mechanical operational safety and minimizing maintenance costs. Due to the difficulty in obtaining data on the performance degradation and failure time of rolling bearings, traditional methods for reliability assessment are challenged. This paper introduces a novel hybrid method for the reliability assessment of rolling bearings, combining the convolutional neural network (CNN)‐convolutional block attention module (CBAM)‐ bidirectional long short‐term memory (BiLSTM) network with the Wiener process. The approach comprises three distinct stages: Initially, it involves acquiring two‐dimensional time‐frequency representations of bearings at various operational phases using Continuous Wavelet Transform. Subsequently, the CNN‐CBAM‐BiLSTM network is employed to establish health index (HI) for the bearings and to facilitate the extraction of deep features, serving as input for the Wiener process. The final stage applies the Wiener process to evaluate the bearings’ reliability, characterizing the HI and quantifying uncertainties. The experiment is performed on bearing degradation data and the results indicate the effectiveness and superiority of the proposed hybrid method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研蛀虫发布了新的文献求助10
1秒前
科研通AI5应助DrDong98采纳,获得10
1秒前
jjl完成签到 ,获得积分10
1秒前
Rain_BJ发布了新的文献求助10
1秒前
2秒前
Jasper应助单身的凡雁采纳,获得10
2秒前
上官若男应助ry采纳,获得10
2秒前
赘婿应助哈哈哈采纳,获得10
2秒前
科研通AI5应助张泽东采纳,获得10
2秒前
LMT关注了科研通微信公众号
2秒前
打打应助矮小的长颈鹿采纳,获得10
3秒前
3秒前
川枫辞发布了新的文献求助20
3秒前
3秒前
4秒前
Lois发布了新的文献求助50
4秒前
zx完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
善学以致用应助雅馨芬芳采纳,获得10
6秒前
坤坤发布了新的文献求助10
8秒前
8秒前
miro完成签到,获得积分10
8秒前
8秒前
娃哈哈完成签到,获得积分10
8秒前
慕青应助Rain_BJ采纳,获得10
8秒前
丘比特应助甜叶菊采纳,获得10
8秒前
8秒前
9秒前
魔幻的橘子完成签到 ,获得积分10
9秒前
小熊宝宝发布了新的文献求助10
9秒前
ry完成签到,获得积分10
9秒前
一一应助iuhgnor采纳,获得10
10秒前
Miner完成签到,获得积分10
10秒前
10秒前
可爱的函函应助吕敬瑶采纳,获得10
11秒前
12秒前
曲夜白发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4491454
求助须知:如何正确求助?哪些是违规求助? 3945047
关于积分的说明 12233289
捐赠科研通 3601983
什么是DOI,文献DOI怎么找? 1981062
邀请新用户注册赠送积分活动 1017961
科研通“疑难数据库(出版商)”最低求助积分说明 910752