A hybrid reliability assessment method based on health index construction and reliability modeling for rolling bearing

可靠性(半导体) 可靠性工程 过程(计算) 卷积神经网络 方位(导航) 计算机科学 工程类 人工智能 量子力学 操作系统 物理 功率(物理)
作者
Yuan‐Jian Yang,Chengyuan Ma,G Liu,Hao Lü,Le Dai,Jia‐Lun Wan,Junyu Guo
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (8): 4131-4146
标识
DOI:10.1002/qre.3630
摘要

Abstract The assessment of rolling bearing reliability is vital for ensuring mechanical operational safety and minimizing maintenance costs. Due to the difficulty in obtaining data on the performance degradation and failure time of rolling bearings, traditional methods for reliability assessment are challenged. This paper introduces a novel hybrid method for the reliability assessment of rolling bearings, combining the convolutional neural network (CNN)‐convolutional block attention module (CBAM)‐ bidirectional long short‐term memory (BiLSTM) network with the Wiener process. The approach comprises three distinct stages: Initially, it involves acquiring two‐dimensional time‐frequency representations of bearings at various operational phases using Continuous Wavelet Transform. Subsequently, the CNN‐CBAM‐BiLSTM network is employed to establish health index (HI) for the bearings and to facilitate the extraction of deep features, serving as input for the Wiener process. The final stage applies the Wiener process to evaluate the bearings’ reliability, characterizing the HI and quantifying uncertainties. The experiment is performed on bearing degradation data and the results indicate the effectiveness and superiority of the proposed hybrid method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
1111应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
qin希望应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助yuyu采纳,获得10
1秒前
2秒前
传奇3应助AAA采纳,获得10
2秒前
胡子发布了新的文献求助10
2秒前
Ula完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
我是老大应助郭同学采纳,获得10
3秒前
zjt1111111发布了新的文献求助10
4秒前
4秒前
fanghua完成签到,获得积分20
4秒前
香蕉觅云应助轻松的万恶采纳,获得10
5秒前
bkagyin应助显隐采纳,获得10
7秒前
沉默白桃发布了新的文献求助10
7秒前
大个应助微笑夏岚采纳,获得10
8秒前
zho关闭了zho文献求助
8秒前
乐乐应助花痴的早晨采纳,获得10
8秒前
干净的烧鹅完成签到,获得积分10
9秒前
星辰大海应助YangSY采纳,获得20
9秒前
9秒前
10秒前
123关闭了123文献求助
11秒前
传奇3应助zjt1111111采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
SYLH应助钱念波采纳,获得10
15秒前
AAA发布了新的文献求助10
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4045974
求助须知:如何正确求助?哪些是违规求助? 3583691
关于积分的说明 11390173
捐赠科研通 3310977
什么是DOI,文献DOI怎么找? 1822114
邀请新用户注册赠送积分活动 894308
科研通“疑难数据库(出版商)”最低求助积分说明 816119