Optimal Management Strategy for Salt Adsorption Capacity in Machine Learning-Based Flow-Electrode Capacitive Deionization Process

电容去离子 吸附 电极 过程(计算) 材料科学 电容感应 盐(化学) 计算机科学 工艺工程 电化学 工程类 化学 有机化学 物理化学 操作系统
作者
Sung Il Yu,Junbeom Jeon,Yong-Uk Shin,Hyokwan Bae
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (8): 1937-1947 被引量:14
标识
DOI:10.1021/acsestengg.4c00142
摘要

Flow-electrode capacitive deionization (FCDI) has created a breakthrough toward a more stable desalination performance by adopting a flow-electrode compared to existing capacitive deionization and membrane capacitive deionization as a promising electrochemical water treatment technology. However, the FCDI technology requires investigation of various mechanisms pertaining to flow-electrode materials to achieve system optimization. Further, studies on applying machine learning to the FCDI technology have been scarcely reported. Our study aims to explore optimal algorithms via machine learning for predicting the salt adsorption capacity of FCDI processes and evaluate the feasibility of optimization applications. Concurrently, a comparative analysis was conducted through the performance model indicators of mean absolute error (MAE), mean squared error, and R2 for support vector machine, random forest, and artificial neural network (ANN) algorithms. Herein, we demonstrated that the optimal ANN-based model exhibited the highest predictive performance, achieving R2 and MAE values of 0.996 and 0.21 mg/g, respectively. Additionally, the Shapley additive explanations (SHAP) confirmed a trend in the contribution of influent concentration, aligning closely with the results of statistical analysis. Specifically, the change in voltage of the FCDI process serves as a key factor in determining salt adsorption efficiency. Moreover, a parallel comparison of the Pearson correlation coefficient and SHAP analyses suggests that the impact of voltage entails a nonlinear contribution within the realm of machine learning. Finally, to deploy a machine learning-driven ANN model system, we present multiple factors (e.g., weight of flow-electrodes, influent concentration, and voltages) as a reinforcement learning model for decision-making. This offers valuable insights and guidance for future operations of the FCDI process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄10086发布了新的文献求助10
刚刚
舒适的孤云完成签到,获得积分10
刚刚
1秒前
bkagyin应助satchzhao采纳,获得10
1秒前
不辞完成签到,获得积分10
2秒前
2秒前
浮游应助Wuyi采纳,获得10
2秒前
香蕉觅云应助Wuyi采纳,获得10
2秒前
星辰大海应助Wuyi采纳,获得10
3秒前
3秒前
木之木发布了新的文献求助10
3秒前
AKA完成签到 ,获得积分10
5秒前
笨笨完成签到,获得积分10
5秒前
打打应助cloud采纳,获得30
6秒前
6秒前
体贴雪碧完成签到,获得积分10
6秒前
CodeCraft应助黄10086采纳,获得10
6秒前
7秒前
子车茗应助贵花香满地采纳,获得30
8秒前
脑洞疼应助hhhx采纳,获得10
8秒前
8秒前
Lina完成签到,获得积分10
8秒前
雏菊完成签到,获得积分20
9秒前
10秒前
Zhusy发布了新的文献求助10
10秒前
Hello应助LYriQue采纳,获得10
10秒前
kermitds发布了新的文献求助10
12秒前
14秒前
Moto_Fang完成签到,获得积分10
14秒前
lelele完成签到,获得积分10
15秒前
asdmxywin发布了新的文献求助20
15秒前
紧一发布了新的文献求助10
16秒前
16秒前
脑洞疼应助silence采纳,获得10
16秒前
MeiyanZou发布了新的文献求助10
18秒前
shunee完成签到,获得积分20
20秒前
21秒前
21秒前
佳佳发布了新的文献求助10
21秒前
浮游应助无聊的怀莲采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308864
求助须知:如何正确求助?哪些是违规求助? 4453810
关于积分的说明 13858222
捐赠科研通 4341572
什么是DOI,文献DOI怎么找? 2384004
邀请新用户注册赠送积分活动 1378588
关于科研通互助平台的介绍 1346583