生物力学
医学
矢状面
口腔正畸科
负重
固定(群体遗传学)
解剖
外科
环境卫生
人口
作者
Zhong Wang,Hui Zhao,Jiming Liu,Rui Chao,Tai-bang Chen,Liwen Tan,Feng Zhu,Jianhua Zhao,Peng Liu
标识
DOI:10.1016/j.clinbiomech.2017.10.017
摘要
Background Operative level is a potential biomechanical risk factor for construct failure during anterior fixation for distractive flexion injury. No biomechanical study of this concept has been reported, although it is important in clinical management. Methods To explore the mechanism of this concept, a previously validated three-dimensional C2-T1 finite element model was modified to simulate surgical procedure via the anterior approach for treating single-level distractive flexion injury, from C2-C3 to C7-T1. Four loading conditions were used including no-compression, follower load, axial load, and combined load. Construct stability at the operative level was assessed. Findings Under these loading conditions with the head's weight simulated, segmental stability decreases when the operative level shifts cephalocaudally, especially at C6-C7 and C7-T1, the stress of screw-bone interface increases cephalocaudally, and in the same operative level, the caudal screws always carries more load than the cephalad ones. All these predicted results are consistent with failure patterns observed in clinical reports. In the contrast, under other loading conditions without the weight of head, no obvious segmental divergence was predicted. Interpretation This study supports that the biomechanical mechanism of this phenomenon includes eccentric load from head weight during sagittal movements and difference of moment arms. Our study suggests that anterior fixation is not recommended for treating distractive flexion injury at the caudal segments of the subaxial cervical spine, especially at C6-C7 and C7-T1, because of the intrinsic instability in these segments. Combined posterior rigid fixation with anterior fixation should be considered for these segments.
科研通智能强力驱动
Strongly Powered by AbleSci AI