Multi-view features fusion for birdsong classification

人工智能 计算机科学 模式识别(心理学) 分类器(UML) Mel倒谱 支持向量机 感知器 特征提取 随机森林 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Shanshan Xie,Lü Jing,Jiang Liu,Yan Zhang,Danjv Lv,Xu Chen,Youjie Zhao
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:72: 101893-101893 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101893
摘要

As important members of the ecosystem, birds are good monitors of the ecological environment. Bird recognition, especially birdsong recognition, has attracted more and more attention in the field of artificial intelligence. At present, traditional machine learning and deep learning are widely used in birdsong recognition. Deep learning can not only classify and recognize the spectrums of birdsong, but also be used as a feature extractor. Machine learning is often used to classify and recognize the extracted birdsong handcrafted feature parameters. As the data samples of the classifier, the feature of birdsong directly determines the performance of the classifier. Multi-view features from different methods of feature extraction can obtain more perfect information of birdsong. Therefore, aiming at enriching the representational capacity of single feature and getting a better way to combine features, this paper proposes a birdsong classification model based multi-view features, which combines the deep features extracted by convolutional neural network (CNN) and handcrafted features. Firstly, four kinds of handcrafted features are extracted. Those are wavelet transform (WT) spectrum, Hilbert-Huang transform (HHT) spectrum, short-time Fourier transform (STFT) spectrum and Mel-frequency cepstral coefficients (MFCC). Then CNN is used to extract the deep features from WT, HHT and STFT spectrum, and the minimal-redundancy-maximal-relevance (mRMR) to select optimal features. Finally, three classification models (random forest, support vector machine and multi-layer perceptron) are built with the deep features and handcrafted features, and the probability of classification results of the two types of features are fused as the new features to recognize birdsong. Taking sixteen species of birds as research objects, the experimental results show that the three classifiers obtain the accuracy of 95.49%, 96.25% and 96.16% respectively for the features of the proposed method, which are better than the seven single features and three fused features involved in the experiment. This proposed method effectively combines the deep features and handcrafted features from the perspectives of signal. The fused features can more comprehensively express the information of the bird audio itself, and have higher classification accuracy and lower dimension, which can effectively improve the performance of bird audio classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zangzang发布了新的文献求助10
1秒前
1秒前
王小明发布了新的文献求助10
1秒前
gdh发布了新的文献求助10
2秒前
852应助儒雅青亦采纳,获得10
2秒前
dyy完成签到 ,获得积分10
2秒前
lili完成签到,获得积分10
3秒前
3秒前
勿奈何完成签到,获得积分10
3秒前
完美世界应助石文采纳,获得10
3秒前
青衫完成签到 ,获得积分10
3秒前
coldspringhao完成签到,获得积分10
4秒前
4秒前
杨欣悦完成签到 ,获得积分10
5秒前
babe完成签到 ,获得积分10
6秒前
权归尘发布了新的文献求助20
6秒前
褚明雪发布了新的文献求助10
6秒前
阿秋完成签到,获得积分10
6秒前
万能图书馆应助zcious采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
结实凌瑶完成签到 ,获得积分10
9秒前
核桃发布了新的文献求助10
9秒前
在水一方应助yhz123采纳,获得10
9秒前
10秒前
whisper完成签到,获得积分10
10秒前
lili发布了新的文献求助10
10秒前
11秒前
打老虎发布了新的文献求助10
11秒前
木子发布了新的文献求助20
12秒前
跳脚的虾完成签到 ,获得积分10
12秒前
Szw666完成签到,获得积分10
12秒前
12秒前
13秒前
fanqinge完成签到,获得积分20
13秒前
13秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843574
求助须知:如何正确求助?哪些是违规求助? 3385883
关于积分的说明 10542869
捐赠科研通 3106677
什么是DOI,文献DOI怎么找? 1711032
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380