Skeleton-Based Gesture Recognition With Learnable Paths and Signature Features

计算机科学 判别式 模式识别(心理学) 卷积神经网络 人工智能 特征提取 路径(计算) 图形 签名(拓扑) 运动学 理论计算机科学 数学 几何学 经典力学 物理 程序设计语言
作者
Jiale Cheng,Dongzi Shi,Chenyang Li,Yu Li,Hao Ni,Lianwen Jin,Xin Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3951-3961 被引量:1
标识
DOI:10.1109/tmm.2023.3318242
摘要

For the skeleton-based gesture recognition, graph convolutional networks (GCNs) have achieved remarkable performance since the human skeleton is a natural graph. However, the biological structure might not be the crucial one for motion analysis. Also, spatial differential information like joint distance and angle between bones may be overlooked during the graph convolution. In this paper, we focus on obtaining meaningful joint groups and extracting their discriminative features by the path signature (PS) theory. Firstly, to characterize the constraints and dependencies of various joints, we propose three types of paths, i.e., spatial, temporal, and learnable path. Especially, a learnable path generation mechanism can group joints together that are not directly connected or far away, according to their kinematic characteristic. Secondly, to obtain informative and compact features, a deep integration of PS with few parameters are introduced. All the computational process is packed into two modules, i.e., spatial-temporal path signature module (ST-PSM) and learnable path signature module (L-PSM) for the convenience of utilization. They are plug-and-play modules available for any neural network like CNNs and GCNs to enhance the feature extraction ability. Extensive experiments have conducted on three mainstream datasets (ChaLearn 2013, ChaLearn 2016, and AUTSL). We achieved the state-of-the-art results with simpler framework and much smaller model size. By inserting our two modules into the several GCN-based networks, we can observe clear improvements demonstrating the great effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凤发布了新的文献求助10
刚刚
刚刚
傻瓜子完成签到,获得积分10
刚刚
复杂的立果完成签到,获得积分10
1秒前
justin完成签到,获得积分10
2秒前
黄鱼面发布了新的文献求助10
2秒前
Shawn完成签到,获得积分20
2秒前
乐乐发布了新的文献求助150
4秒前
狼牙月完成签到,获得积分10
5秒前
5秒前
陈雷应助老迟到的念文采纳,获得30
6秒前
Bang关注了科研通微信公众号
7秒前
fqs完成签到 ,获得积分10
7秒前
高兴不尤发布了新的文献求助10
8秒前
11秒前
11秒前
兴奋小丸子完成签到,获得积分10
12秒前
12秒前
陈雷应助神秘玩家采纳,获得10
13秒前
慕青应助andrele采纳,获得10
14秒前
14秒前
doocan完成签到,获得积分10
14秒前
黄鱼面完成签到,获得积分10
14秒前
打打应助酷酷的王采纳,获得10
16秒前
良辰给YUHUIFAN的求助进行了留言
16秒前
充电宝应助川川采纳,获得10
16秒前
学医的杨同学完成签到,获得积分10
16秒前
zy123完成签到,获得积分10
17秒前
yyygc完成签到,获得积分10
18秒前
扶溪筠完成签到,获得积分10
18秒前
asdwe172009完成签到 ,获得积分10
18秒前
隐形鸣凤发布了新的文献求助10
18秒前
19秒前
研友_8QQlD8发布了新的文献求助10
19秒前
彩虹发布了新的文献求助10
19秒前
20秒前
wanci应助枫叶采纳,获得10
20秒前
21秒前
科研通AI5应助隐形土豆采纳,获得10
21秒前
haha完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794928
求助须知:如何正确求助?哪些是违规求助? 3339887
关于积分的说明 10297885
捐赠科研通 3056485
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805104
科研通“疑难数据库(出版商)”最低求助积分说明 762333