硝酸盐
铵
环境化学
氮气
气溶胶
亚硝酸盐
硝酸铵
季节性
化学
环境科学
生态学
生物
有机化学
作者
Jinhui Shi,Yun Zhang,Rui-Peng Li,Huiwang Gao,Jing Zhang
摘要
33 total suspended particle samples and 7 size-segregated particle samples were collected over the East China Sea from Nov. to Dec., 2006, Feb. to Mar., 2007 and May. to Jun., 2008. Concentrations of ammonium, nitrate and nitrite in aerosols were measured to investigate their seasonal variation and size distribution. The concentrations of ammonium in aerosols ranged from 2.6 to 646.9 nmol x m(-3) ,with the higher values observed in winter and spring, and the lower values in summer. Nitrate concentrations were from 5.5 to 281.5 nmol x m(-3), presenting the seasonal trend of winter > spring approximately summer. The concentrations of nitrite were very low, less than 0.5 nmol x m(-3). The relative contributions of nitrogen species to total nitrogen varied seasonally in some extent. The contribution of nitrate was comparable with that of ammonium in winter, while the contribution of ammonium was the predominant in spring and summer. The size distribution of nitrate presented clear monthly changes. Most of nitrate existed in the fine particles less than 2.1 microm in Nov. to Dec., and it predominated in the coarse particles with the size of 1.1-4.7 microm and 2.1-7.0 microm, respectively, in Feb. to Mar. and May. to Jun. The size distributions of ammonium in different months were similar, with one peak presenting in the < 1.1 microm fine particles. The air mass back trajectories analysis indicated that the distributions of inorganic nitrogen in aerosols were significantly influenced by the sources and transport pathways of air mass. Both high nitrogen concentration per unit atmospheric volume (nmol x m(-3)) and per unit mass particle (micromol x g(-1)) occurred when the air mass passed over severe pollution region. Both low concentration in atmosphere and particle occurred when the air mass came from clean marine atmosphere. Lower concentration in atmosphere and higher concentration in particle occurred when the air mass originated from the continent and transported long distances over the sea.
科研通智能强力驱动
Strongly Powered by AbleSci AI