Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN

脑电图 模式识别(心理学) 人工智能 公制(单位) 自闭症谱系障碍 递归量化分析 计算机科学 神经生理学 心理学
作者
Thanga Aarthy Manoharan,Menaka Radhakrishnan
出处
期刊:Clinical Eeg and Neuroscience [SAGE Publishing]
卷期号:: 155005942110549-155005942110549
标识
DOI:10.1177/15500594211054990
摘要

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation. These sensory modulation deficits would ultimately lead them to difficulties in adaptive behavior and intellectual functioning. The purpose of this study was to observe changes in the nervous system with responses to auditory/visual and only audio stimuli in children with autism and typically developing (TD) through electroencephalography (EEG). In this study, 20 children with ASD and 20 children with TD were considered to investigate the difference in the neural dynamics. The neural dynamics could be understood by non-linear analysis of the EEG signal. In this research to reveal the underlying nonlinear EEG dynamics, recurrence quantification analysis (RQA) is applied. RQA measures were analyzed using various parameter changes in RQA computations. In this research, the cosine distance metric was considered due to its capability of information retrieval and the other distance metrics parameters are compared for identifying the best biomarker. Each computational combination of the RQA measure and the responding channel was analyzed and discussed. To classify ASD and TD, the resulting features from RQA were fed to the designed BiLSTM (bi-long short-term memory) network. The classification accuracy was tested channel-wise for each combination. T3 and T5 channels with neighborhood selection as FAN (fixed amount of nearest neighbors) and distance metric as cosine is considered as the best-suited combination to discriminate between ASD and TD with the classification accuracy of 91.86%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
元元元贞完成签到,获得积分10
刚刚
刚刚
怕孤独的鹭洋完成签到,获得积分10
刚刚
淡淡de橙子完成签到,获得积分10
1秒前
我要文献发布了新的文献求助10
1秒前
2秒前
大个应助苹果寻菱采纳,获得30
2秒前
小二郎应助LY采纳,获得10
2秒前
可爱的冷霜完成签到,获得积分10
4秒前
传奇3应助百事可乐采纳,获得10
4秒前
yiyi发布了新的文献求助10
5秒前
5秒前
chun发布了新的文献求助10
6秒前
7秒前
renpan2024发布了新的文献求助10
7秒前
7秒前
壮观的盼波完成签到,获得积分10
8秒前
8R60d8应助我要文献采纳,获得10
8秒前
御景风完成签到,获得积分10
8秒前
静越完成签到,获得积分10
9秒前
9秒前
Vivian完成签到,获得积分10
9秒前
毛淑飞发布了新的文献求助10
11秒前
汤姆完成签到,获得积分10
12秒前
Jolene66发布了新的文献求助10
12秒前
qq722249完成签到,获得积分10
12秒前
李洪卓发布了新的文献求助10
12秒前
lancyab完成签到,获得积分10
13秒前
柚子完成签到,获得积分10
13秒前
爆米花应助高兴的大米采纳,获得10
13秒前
orixero应助静越采纳,获得10
14秒前
852应助张二娃采纳,获得10
14秒前
酷酷凝云完成签到,获得积分10
15秒前
15秒前
大白发布了新的文献求助10
15秒前
栗子完成签到 ,获得积分10
15秒前
16秒前
QhL完成签到,获得积分10
16秒前
诺诺猪完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933582
求助须知:如何正确求助?哪些是违规求助? 3478691
关于积分的说明 11002558
捐赠科研通 3208758
什么是DOI,文献DOI怎么找? 1773233
邀请新用户注册赠送积分活动 860244
科研通“疑难数据库(出版商)”最低求助积分说明 797609