已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Data-Driven MPC Energy Optimization Management Strategy for Fuel Cell Distributed Electric Propulsion UAV

推进 电力航天器推进 汽车工程 分布式发电 电动汽车 能源管理 电力 计算机科学 发电 工程类 功率(物理) 航空航天工程 可再生能源 能量(信号处理) 电气工程 量子力学 统计 物理 数学
作者
Zhihao Min,Tao Lei,Xingyu Zhang,Qinxiang Gao,Xiaobin Zhang
标识
DOI:10.1109/aeees54426.2022.9759649
摘要

With the development of green aviation technology, distributed electric propulsion aircraft has been the focus of research topic in the field of aviation technology due to its high flight efficiency, low pollutant emissions, high energy efficiency, and diverse aerodynamic layouts design. Compared with gas oil fuel, hydrogen-based fuel cell has the advantages such as zero emissions, low noise and high energy density. In order to improve the overall performance of the fuel-cell distributed electric propulsion UAV, Research on adaptive energy management strategies was conducted in this paper to improve the dynamic response of power system according to variation of propulsion power load. In order to deal with the uncertainty of the electric power load changes during different flight conditions of the UAV, the propulsion power demanding prediction method is presented under different flight conditions based on the flight data obtained from the real electric propulsion UAV flight testing. Based on the data-driven neural network, a distributed electric propulsion power load forecasting model was established. Based on the modeling of the distributed hybrid electric propulsion power system, three energy management strategies are proposed for comparison and verification in this paper. In view of the problem that the uncertainty of propulsion power demand under different flight conditions of UAV affects the performance of distributed electric propulsion system, an energy optimization management strategy based on deep neural network propulsion power demand forecasting combined with model predictive control is proposed. The performance evaluation of the proposed EMS is conducted via digital simulation studies using the data obtained from real-world UAV flighting experiments and its performance is compared with two benchmark schemes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taku完成签到 ,获得积分10
1秒前
4秒前
Jonathan完成签到,获得积分10
4秒前
宁远完成签到,获得积分20
4秒前
xxfsx应助ceeray23采纳,获得20
4秒前
4秒前
共享精神应助wang@163.com采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
宁远发布了新的文献求助10
8秒前
8秒前
ningmengcao发布了新的文献求助10
10秒前
10秒前
Tang发布了新的文献求助10
10秒前
SS完成签到,获得积分0
11秒前
小吴完成签到,获得积分10
13秒前
16秒前
Yaslynn完成签到 ,获得积分10
17秒前
gaw2008发布了新的文献求助10
19秒前
19秒前
充电宝应助单怡嘉采纳,获得10
21秒前
陶逸豪发布了新的文献求助10
21秒前
Jasper应助老实新筠采纳,获得10
22秒前
22秒前
研友_VZG7GZ应助Saven采纳,获得10
23秒前
Joshua完成签到,获得积分10
25秒前
周老八发布了新的文献求助10
27秒前
fzzf发布了新的文献求助10
27秒前
wanci应助Silver采纳,获得10
29秒前
调皮钱钱完成签到,获得积分10
31秒前
32秒前
Shirley完成签到 ,获得积分10
33秒前
慕青应助Yxs采纳,获得10
33秒前
34秒前
汉堡包应助光亮秋天采纳,获得20
37秒前
深情安青应助宁远采纳,获得10
38秒前
39秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5160090
求助须知:如何正确求助?哪些是违规求助? 4354299
关于积分的说明 13558178
捐赠科研通 4198301
什么是DOI,文献DOI怎么找? 2302465
邀请新用户注册赠送积分活动 1302575
关于科研通互助平台的介绍 1247849