Data from BEEx Is an Open-Source Tool That Evaluates Batch Effects in Medical Images to Enable Multicenter Studies

开源 开源软件 计算机科学 多中心研究 数据科学 医学 软件 操作系统 内科学 随机对照试验
作者
Yuxin Wu,Xiongjun Xu,Yuan Cheng,Xiuming Zhang,Fanxi Liu,Zhenhui Li,Lei Hu,Anant Madabhushi,Peng Gao,Zaiyi Liu,Cheng Lu
标识
DOI:10.1158/0008-5472.c.7627185
摘要

<div>Abstract<p>The batch effect is a nonbiological variation that arises from technical differences across different batches of data during the data generation process for acquisition-related reasons, such as collection of images at different sites or using different scanners. This phenomenon can affect the robustness and generalizability of computational pathology- or radiology-based cancer diagnostic models, especially in multicenter studies. To address this issue, we developed an open-source platform, Batch Effect Explorer (BEEx), that is designed to qualitatively and quantitatively determine whether batch effects exist among medical image datasets from different sites. A suite of tools was incorporated into BEEx that provide visualization and quantitative metrics based on intensity, gradient, and texture features to allow users to determine whether there are any image variables or combinations of variables that can distinguish datasets from different sites in an unsupervised manner. BEEx was designed to support various medical imaging techniques, including microscopy and radiology. Four use cases clearly demonstrated the ability of BEEx to identify batch effects and validated the effectiveness of rectification methods for batch effect reduction. Overall, BEEx is a scalable and versatile framework designed to read, process, and analyze a wide range of medical images to facilitate the identification and mitigation of batch effects, which can enhance the reliability and validity of image-based studies.</p><p><b>Significance:</b> BEEx is a prescreening tool for image-based analyses that allows researchers to evaluate batch effects in multicenter studies and determine their origin and magnitude to facilitate development of accurate AI–based cancer models.</p></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ecnu搬砖人发布了新的文献求助10
1秒前
大米完成签到,获得积分10
2秒前
2秒前
困困困完成签到,获得积分10
3秒前
慕青应助大脸萌采纳,获得10
6秒前
平常的毛豆应助wangwang采纳,获得10
7秒前
肆陆发布了新的文献求助10
8秒前
李健的小迷弟应助cj采纳,获得10
8秒前
Freeman0721完成签到,获得积分10
8秒前
8秒前
Seven完成签到,获得积分10
11秒前
kimikoi完成签到,获得积分10
12秒前
qczgzly发布了新的文献求助10
14秒前
阿航完成签到,获得积分10
15秒前
快来拾糖完成签到 ,获得积分10
19秒前
奈克罗普陀西斯完成签到,获得积分10
19秒前
qczgzly完成签到,获得积分10
20秒前
城南她似海完成签到 ,获得积分10
20秒前
上官若男应助Qzy采纳,获得10
21秒前
Orange应助liujinjin采纳,获得10
22秒前
顾矜应助duuuuuu采纳,获得10
25秒前
丘比特应助huihui采纳,获得10
26秒前
26秒前
28秒前
29秒前
30秒前
Ronnie完成签到,获得积分10
31秒前
34秒前
王杰发布了新的文献求助10
34秒前
Ronnie发布了新的文献求助10
34秒前
liujinjin发布了新的文献求助10
35秒前
负责的方盒完成签到,获得积分20
36秒前
科研通AI2S应助勤奋的姒采纳,获得30
36秒前
38秒前
kuyu2完成签到 ,获得积分20
38秒前
hehehe85200完成签到,获得积分10
39秒前
大气的乌冬面完成签到,获得积分10
44秒前
huihui发布了新的文献求助10
44秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757