Data from BEEx Is an Open-Source Tool That Evaluates Batch Effects in Medical Images to Enable Multicenter Studies

开源 开源软件 计算机科学 多中心研究 数据科学 医学 软件 操作系统 内科学 随机对照试验
作者
Yuxin Wu,Xiongjun Xu,Yuan Cheng,Xiuming Zhang,Fanxi Liu,Zhenhui Li,Lei Hu,Anant Madabhushi,Peng Gao,Zaiyi Liu,Cheng Lu
标识
DOI:10.1158/0008-5472.c.7627185
摘要

<div>Abstract<p>The batch effect is a nonbiological variation that arises from technical differences across different batches of data during the data generation process for acquisition-related reasons, such as collection of images at different sites or using different scanners. This phenomenon can affect the robustness and generalizability of computational pathology- or radiology-based cancer diagnostic models, especially in multicenter studies. To address this issue, we developed an open-source platform, Batch Effect Explorer (BEEx), that is designed to qualitatively and quantitatively determine whether batch effects exist among medical image datasets from different sites. A suite of tools was incorporated into BEEx that provide visualization and quantitative metrics based on intensity, gradient, and texture features to allow users to determine whether there are any image variables or combinations of variables that can distinguish datasets from different sites in an unsupervised manner. BEEx was designed to support various medical imaging techniques, including microscopy and radiology. Four use cases clearly demonstrated the ability of BEEx to identify batch effects and validated the effectiveness of rectification methods for batch effect reduction. Overall, BEEx is a scalable and versatile framework designed to read, process, and analyze a wide range of medical images to facilitate the identification and mitigation of batch effects, which can enhance the reliability and validity of image-based studies.</p><p><b>Significance:</b> BEEx is a prescreening tool for image-based analyses that allows researchers to evaluate batch effects in multicenter studies and determine their origin and magnitude to facilitate development of accurate AI–based cancer models.</p></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼KYSL完成签到 ,获得积分10
1秒前
CodeCraft应助xiu-er采纳,获得10
2秒前
2秒前
2秒前
kingdirt完成签到,获得积分10
3秒前
auggy完成签到 ,获得积分10
3秒前
4秒前
机长完成签到 ,获得积分10
5秒前
wangxy完成签到,获得积分10
6秒前
雪山飞龙发布了新的文献求助10
6秒前
jjw123完成签到,获得积分10
7秒前
Akim应助GSY采纳,获得10
7秒前
小杨发布了新的文献求助10
7秒前
7秒前
123发布了新的文献求助10
7秒前
抹茶味的奶酥完成签到,获得积分10
8秒前
慕青应助香蕉爱科研采纳,获得10
8秒前
8秒前
9秒前
大模型应助Koi采纳,获得10
9秒前
研友_VZG7GZ应助逆天小子采纳,获得10
10秒前
陌姌完成签到,获得积分10
10秒前
10秒前
dxh发布了新的文献求助10
11秒前
libaiyao完成签到,获得积分10
11秒前
星辰大海应助王洪采纳,获得10
12秒前
外向的万宝路关注了科研通微信公众号
12秒前
12秒前
zzy完成签到,获得积分10
12秒前
t6发布了新的文献求助10
13秒前
pipizhu发布了新的文献求助10
14秒前
14秒前
刻苦的阳发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
Pwrry发布了新的文献求助10
15秒前
17秒前
毛毛妈完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343389
求助须知:如何正确求助?哪些是违规求助? 4479059
关于积分的说明 13941390
捐赠科研通 4376069
什么是DOI,文献DOI怎么找? 2404428
邀请新用户注册赠送积分活动 1396950
关于科研通互助平台的介绍 1369288