Prediction of Mini-Mental State Examination Scores for Cognitive Impairment and Machine Learning Analysis of Oral Health and Demographic Data Among Individuals Older Than 60 Years: Cross-Sectional Study

过度拟合 随机森林 小型精神状态检查 人口 医学 支持向量机 认知 老年学 机器学习 横断面研究 心理健康 人工智能 认知障碍 计算机科学 精神科 环境卫生 人工神经网络 病理
作者
Alper Idrisoglu,Johan Flyborg,Sarah Nauman Ghazi,Elina Mikaelsson Midlöv,Helén Dellkvist,Anna Axén,Ana Luiza Dallora
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:13: e75069-e75069
标识
DOI:10.2196/75069
摘要

Abstract Background As the older population grows, so does the prevalence of cognitive impairment, emphasizing the importance of early diagnosis. The Mini-Mental State Examination (MMSE) is vital in identifying cognitive impairment. It is known that degraded oral health correlates with MMSE scores ≤26. Objective This study aims to explore the potential of using machine learning (ML) technologies using oral health and demographic examination data to predict the probability of having MMSE scores of 30 or ≤26 in Swedish individuals older than 60 years. Methods The study had a cross-sectional design. Baseline data from 2 longitudinal oral health and ongoing general health studies involving individuals older than 60 years were entered into ML models, including random forest, support vector machine, and CatBoost (CB) to classify MMSE scores as either 30 or ≤26, distinguishing between MMSE of 30 and MMSE ≤26 groups. Nested cross-validation (nCV) was used to mitigate overfitting. The best performance-giving model was further investigated for feature importance using Shapley additive explanation summary plots to easily visualize the contribution of each feature to the prediction output. The sample consisted of 693 individuals (350 females and 343 males). Results All CB, random forest, and support vector machine models achieved high classification accuracies. However, CB exhibited superior performance with an average accuracy of 80.6% on the model using 3 × 3 nCV and surpassed the performance of other models. The Shapley additive explanation summary plot illustrates the impact of factors on the model’s predictions, such as age, Plaque Index, probing pocket depth, a feeling of dry mouth, level of education, and use of dental hygiene tools for approximal cleaning. Conclusions The oral health parameters and demographic data used as inputs for ML classifiers contain sufficient information to differentiate between MMSE scores ≤26 and 30. This study suggests oral health parameters and ML techniques could offer a potential tool for screening MMSE scores for individuals aged 60 years and older.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tomyyh完成签到,获得积分10
1秒前
赵yy完成签到,获得积分0
2秒前
2秒前
3秒前
谦让水香完成签到,获得积分10
3秒前
starwan完成签到 ,获得积分10
4秒前
单纯乞完成签到,获得积分10
4秒前
Jasper应助张菲菲采纳,获得10
5秒前
000完成签到,获得积分10
5秒前
guoguo完成签到,获得积分10
5秒前
democienceek完成签到,获得积分10
6秒前
小青椒应助gloval采纳,获得50
7秒前
陈朝鑫完成签到,获得积分10
7秒前
YYL完成签到,获得积分10
7秒前
VDC应助qqlan采纳,获得30
7秒前
kingsley完成签到,获得积分10
8秒前
阿湫完成签到 ,获得积分10
8秒前
小年完成签到,获得积分10
8秒前
zz完成签到,获得积分10
8秒前
白笑石发布了新的文献求助10
9秒前
9秒前
美好凡阳完成签到,获得积分10
9秒前
10秒前
等待黎明完成签到,获得积分10
11秒前
KKKK完成签到,获得积分10
12秒前
南漂完成签到,获得积分10
12秒前
ixueyi完成签到,获得积分10
12秒前
车车完成签到,获得积分10
13秒前
amberzyc完成签到,获得积分0
13秒前
14秒前
要减肥谷波完成签到,获得积分20
14秒前
机会啊完成签到,获得积分10
15秒前
封小封完成签到,获得积分10
15秒前
yh完成签到,获得积分10
15秒前
白笑石完成签到,获得积分10
15秒前
15秒前
GU完成签到,获得积分10
16秒前
2012csc完成签到 ,获得积分0
16秒前
16秒前
小二郎应助勤奋流沙采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555208
求助须知:如何正确求助?哪些是违规求助? 4639904
关于积分的说明 14657157
捐赠科研通 4581852
什么是DOI,文献DOI怎么找? 2512980
邀请新用户注册赠送积分活动 1487688
关于科研通互助平台的介绍 1458714