Optimization of organic Rankine cycle turbine expander based on radial basis function neural network and nondominated sorting genetic algorithm II

物理 有机朗肯循环 分类 人工神经网络 遗传算法 径向基函数 功能(生物学) 算法 兰金度 涡轮机 基础(线性代数) 热力学 人工智能 计算机科学 机器学习 生物 进化生物学 热交换器 数学 余热 几何学
作者
Xiaojun Li,Dan Lv,Yang Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3) 被引量:2
标识
DOI:10.1063/5.0257260
摘要

The organic Rankine cycle (ORC) represents an effective technology for the recovery of medium- and low-temperature waste heat. Within this system, the turbine expander plays a critical role in determining the reliability and efficiency of the overall process. This paper presents a structural optimization approach that integrates a radial basis function (RBF) neural network model with the nondominated sorting genetic algorithm II (NSGA-II), considering the isentropic efficiency and power of the ORC turbine expander using R1233zd(E) as the optimization objectives. Utilizing the design-of-experiments method in conjunction with simulation, a high-precision RBF neural network model was developed and trained. The external performance and internal flow characteristics of the original and optimized model are compared. In addition, the entropy production method is used to locate and quantitatively evaluate the energy losses. The results indicate that the RBF neural network model exhibits high predictive accuracy, with a correlation coefficient (R2) exceeding 0.9 for both objective functions. The optimization process significantly enhanced the performance of the ORC turbine expander. Under Q/Qd = 1.2, the isentropic efficiency and power are significantly improved by 6.13% and 33.96%. The optimized model can accommodate a larger range of flow variations, increasing the efficient operation region by 1.28 times. The energy loss of the ORC turbine expander decreases by an average of over 17% due to the effective suppression of vortices at the leading edge and outlet of the impeller. This work provides a valuable reference for improving the performance of radial turbine expanders for waste heat recovery and other application fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
b_完成签到,获得积分10
刚刚
qww发布了新的文献求助30
1秒前
jn完成签到,获得积分10
1秒前
小马甲应助恒fj采纳,获得30
2秒前
su完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
5秒前
传奇3应助小蓝采纳,获得10
5秒前
时尚的煎蛋完成签到,获得积分10
5秒前
5秒前
6秒前
llllzzh发布了新的文献求助10
6秒前
6秒前
可爱的函函应助jason采纳,获得10
6秒前
酷波er应助fan采纳,获得10
7秒前
7秒前
7秒前
8秒前
无限莫言发布了新的文献求助50
9秒前
showmaker发布了新的文献求助10
9秒前
活力惜寒发布了新的文献求助10
9秒前
大模型应助沉默的钵钵鸡采纳,获得30
9秒前
内向的涵菡完成签到,获得积分20
9秒前
科研通AI2S应助starry采纳,获得30
10秒前
HHHHH发布了新的文献求助10
11秒前
11秒前
Owen应助糠沙采纳,获得10
12秒前
Huasen Lu发布了新的文献求助10
12秒前
13秒前
13秒前
SCI朝我来发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
LJW发布了新的文献求助10
14秒前
小新应助Ayuyu采纳,获得10
15秒前
熊熊熊完成签到,获得积分10
16秒前
无限莫言完成签到,获得积分10
17秒前
忘多发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513335
求助须知:如何正确求助?哪些是违规求助? 4607628
关于积分的说明 14506095
捐赠科研通 4543202
什么是DOI,文献DOI怎么找? 2489411
邀请新用户注册赠送积分活动 1471350
关于科研通互助平台的介绍 1443374